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As part of a product improvement program to upgrade the CH-47F cockpit and flight 
control system for the US Army, a new Digital Automatic Flight Control System (DAFCS) is 
being developed by Boeing Helicopters. The DAFCS will incorporate modern control 
algorithms in the low-speed/hover regime to improve handling qualities for operations in a 
Degraded Visual Environment (DVE). In support of the modern control law development, 
the US Army required a complete closed-loop analysis model in SIMULINK®. The central 
element of this analysis model was an accurate state-space representation of the bare-
airframe response. CIFER® was used to perform the system identification at three gross 
weights and two airspeeds having a common quasi-steady model structure. The quasi-steady 
model identification had a restricted frequency range due to rotor-on-rotor and inflow 
dynamics. Subsequently, the quasi-steady model was extended to higher-frequencies by 
incorporating higher-order rotor dynamics. This paper covers the identification of the 
longitudinal/heave-axis bare-airframe dynamics for the Heavy Gross Weight (HGW) hover 
configuration, and provides a comparison of results for the quasi-steady and hybrid models. 

Nomenclature 
-1a = airfoil lift curve slope, (rad ); or acceleration when subscripted with x, y, z 

A = derivative for specific inflow “apparent mass” force 
B = derivative for specific flapping (coning) moment 
c = mean blade chord, (ft) 

TC  = thrust coefficient 

TC~  = perturbation of thrust coefficient  

0C  = dynamic inflow model factor ( =1 for Pitt-Peters model, =0.639 for Carpenter-Fridovich model) 0C 0C
nd

012 ,, ddd  = rotor-on-rotor torque mode 2  order system denominator coefficients  
F = designates forward rotor when subscript 
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F = stability derivative matrix 
g = acceleration due to gravity, (32.174 ft/sec2) 
G = control derivative matrix 
h = vertical distance from aircraft center-of-gravity to center of rotor hub, (ft) 
H, H = hub in-plane force; or output matrix when bold 
I  = aircraft moment of inertia about y-axis, (slug-ft2) yy
J = output control matrix 
K  = control gain converting differential collective pitch inputs to effective blade root pitch angle, (rad/in) DCP
Kθ = control gain converting collective pitch inputs to effective blade root pitch angle, (rad/in) 

 = longitudinal distance from aircraft center-of-gravity to center of rotor hub, (ft) l
m = mass of aircraft, (slug) 
M, M = derivative for specific pitching moment; or hub moment; or modal matrix when bold 
M̂  = derivative for specific higher-order pitching moment 
Mf = derivative for pitch axis flapping moment 

012 ,, nnn  = rotor-on-rotor torque mode 2nd order system numerator coefficients  
p = fuselage roll rate, (rad/sec); + right wing down 
q = fuselage pitch rate, (rad/sec); + nose up 
r = fuselage yaw rate, (rad/sec); + nose right 
R = rotor radius, (ft); or designates rear rotor when subscript 

)(sR  = transfer function for rotor-on-rotor torque mode 
s = Laplace transform variable 
T = thrust, (lbf) 
u = control vector 
u = longitudinal velocity in body-axis, (ft/sec); + forward 
v = lateral velocity in body-axis, (ft/sec); + right 
w = vertical velocity in body-axis, (ft/sec); + down 
W = weight of aircraft, (lbf) 
x = state vector 
X = derivative for specific longitudinal force 
X̂  = derivative for specific higher-order longitudinal force 

Y = derivative for specific lateral force 
Z = derivative for specific vertical force 
Ẑ  = derivative for specific higher-order vertical force 

0β  = coning angle, (rad); + up 

c1β  = longitudinal flapping angle, (rad); + forward 

s1β  = lateral flapping angle, (rad); + left 
γ  = Lock number 

 = perturbation Δ
 = thrust lever control deflection input as measured at the pilot stick (col) or mixing unit (COL), (inches) COLcol δδ ,
= control deflection input as measured at the pilot stick (lon) or mixing unit (LON), (inches) LONlon δδ ,

ζ  = damping ratio 
θ  = fuselage pitch attitude, (rad) 

0ν  = inflow ratio, ( )2
00 TC+=ν  

ρ  = air density, (slug/ft3) 
 = rotor solidity ratio σ

fτ  = rotor flap time constant, (sec) 

)(LONCOLτ  = equivalent time delay for collective (or longitudinal) axis, (sec) 
υ  = rotor dynamic inflow state 

 = rotor speed, (rad/sec) Ω
nω  = natural frequency, (rad/sec) 
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I. Introduction 
T the request of the US Army, Boeing Helicopters is currently developing a Digital Automatic Flight Control 
System (DAFCS) upgrade for the CH-47F Chinook helicopter to replace the obsolete analog flight controllers. 

The CH-47 analog AFCS was originally designed to meet the requirements of MIL-H-8501, General Requirements 
for Helicopter Flying and Ground Handling Qualities (dated 5 Nov 1952). This military specification was updated 
to Rev. A (MIL-H-8501A) in September of 1961; which remained in effect until it was canceled without 
replacement in August of 1995. In addition, the analog AFCS control laws were designed for operations in day 
Visual Meteorological Conditions (VMC) at altitude. 

 A

In contrast to original mission requirements, the Army is currently placing greater emphasis on operations at 
night and in a Degraded Visual Environment (DVE). As a result of this mission creep, pilot workload has increased 
and handling qualities have deteriorated— especially in low-speed/hover near-earth operations. The original 
performance specification requirements are antiquated and outdated in light of today’s operational demands and the 
need to safely operate in a DVE. Much research has been accomplished over the last two decades to develop 
improved performance specifications1,2 to address handling qualities requirements and the control response-
types3, ,4 5 needed for safe DVE operations. 

The new digital Flight Control Computers (FCCs) for the CH-47F are being integrated into the existing legacy 
flight control system and therefore maintain the limited-, partial-authority architecture. However, recent research6,7 
has shown that the modern control algorithms developed to address handling qualities shortcomings in a DVE are 
capable of being successfully implemented in a limited-authority AFCS. Based upon this research and flight-test 
demonstrations, the US Army directed Boeing to incorporate an attitude command response-type as the baseline 
architecture at low-speed/hover and a selectable translational rate command response-type with position hold for 
precision maneuvering within a DVE.8

Frequency-Domain system identification methods were used extensively in this program, to include: 
1) Development of state-space models of bare-airframe dynamics for flight control analysis and optimization 
2) Analysis of closed-loop handling-qualities 
3) Modeling and validation of DAFCS components 
4) Determination of flight control stability margins and 
5) Validation and improvement of physics-based models 
This paper will focus solely on the first application. In support of the flight control development, the US Army 

required a complete closed-loop analysis model in SIMULINK®. The central element of this analysis model was an 
accurate state-space representation of the bare-airframe response— especially in the Heavy Gross Weight (HGW) 
configuration where reduced stability margins were anticipated. System identification studies were conducted based 
upon the frequency-sweep flight-test data, and state-space dynamics models of the CH-47F bare-airframe responses 
were determined for three weight conditions in hover and forward flight. 

This paper presents the HGW hover modeling effort for the longitudinal/heave-axis bare-airframe dynamics 
associated with the DAFCS flight-test program using CIFER®

Table 1. Frequency-sweep test conditions.  
Aircraft  

Configuration 
Approximate

Gross 
Weight (lb) 

Longitudinal 
Center of 

Gravity (in) 

Pressure 
Altitude 

(ft) 

Airspeed 
(KIAS) 

Field 0 Light 33,000 nominal 
5000 60 
Field 0 Medium 41,000 nominal 5000 60 
Field 0 Heavy 48,000 nominal 5000 60 

 (performed by the 2nd and 3rd authors); as well as a 
graduate research project (performed by the 1st author) to extend the identified state-space model to higher 
frequencies by implementing higher-order dynamic modes into the model architecture using the hybrid-model 
structure developed by Tomashofski and Tischler.9 The two models are compared in terms of frequency-domain 
match to flight data, time-domain match to flight data, and accuracy of control system stability metrics. 

A. Objective for Frequency-Domain Flight Testing 
The objective of the frequency-domain flight testing was to gather sufficient data for the system identification at 

various operating points within the flight envelope, at various aircraft gross weights, so as to ensure the control 
algorithms were robust over a 
representative flight envelope. 
Test conditions for the 
frequency-domain testing are 
given in Table 1. As stated 
earlier, this paper will focus 
only on the system 
identification for the HGW 
configuration, at the hover 
condition, as it was deemed the 
most critical.  
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B. Description 
1. General Aircraft Description 

The CH-47F is a twin turbine-engine, tandem-rotor helicopter designed for transportation of cargo and troops 
during day or night in visual or instrument meteorological conditions. The helicopter is equipped with two 
Honeywell T55-GA-714A engines. The two engines simultaneously drive the tandem, three-bladed, fully-
articulated, counter-rotating rotors through engine transmissions, a combining transmission, drive shafting, and 
reduction gearboxes. The forward transmission is located at the forward pylon above the cockpit. The combining 
transmission, drive shafting, and aft transmission are located in the aft pylon area. Drive shafting from the 
combining transmission runs along the top of the fuselage to the forward transmission. The helicopter is equipped 
with four fixed landing gear and a hydraulically powered loading ramp at the rear of the cargo compartment. The 
pilot (right seat) and co-pilot (left seat) are seated in a side-by-side configuration with dual flight controls. The 
DAFCS test aircraft is depicted in Figure 1. 

Figure 1. CH-47F Chinook DAFCS test aircraft. 
  

2. Aircraft Modifications 
The test aircraft has been modified to include two primary product improvements: 1) the Digital Automatic 

Flight Control System (DAFCS) and 2) the Common Avionics Architecture System (CAAS). The DAFCS provides 
a digital Flight Control Computer (FCC) replacement for the current, obsolete analog AFCS controller; and in 
addition incorporates modern control algorithms to improve low-speed/hover handling qualities and 
maneuverability. The new Digital FCCs are integrated into the legacy mechanical flight control system, and 
therefore maintain the existing limited-, partial-authority architecture. The CAAS is an avionics suite upgrade that 
replaces analog gauges with a glass cockpit providing full integration of communication, navigation and air vehicle 
systems through a Rockwell-Collins designed pilot interface utilizing five multi-function displays and two control 
display units. 
3.  Flight Control System 

The helicopter is controlled by changing the pitch of the blades on both rotor heads either collectively or 
cyclically. The flight control system consists of lower and upper hydraulic actuation systems, two dual digital FCCs, 
and a mechanical linkage system that mixes and transmits control motions from the cockpit controls to the rotor 
heads.  

The lower hydraulic system consists of the Integrated Lower Control Actuators (ILCAs) which aide the pilot in 
moving the upper flight controls via a boost actuator. The ILCA also includes dual-redundant Extensible Link 
Actuators (ELAs), controlled by the FCCs, providing stability and control augmentation in the pitch, roll, and yaw 
axes. The thrust ILCA does not have ELAs and therefore provides only boost-assist to the pilot. The upper hydraulic 
actuation system includes the pivoting and swiveling Upper Boost Actuators (UBAs) at each swashplate, which are 
actuated via the upper mechanical controls following mechanical control mixing.  

Pitch, roll and yaw changes are controlled through movement of the pilot’s (or copilot’s) flight controls which 
include a thrust control lever (in the Chinook the collective control is properly called thrust control), a cyclic control 
stick, and directional pedals. The pilot’s controls are interconnected beneath the cockpit floor with the copilot’s 
controls. Flight control movements are transmitted through a system of bellcranks, push-pull tubes, and actuators to 
a mixing unit just aft of the cockpit. 

 
American Institute of Aeronautics and Astronautics 

 

4 



 
Figure 4. Rotor system response to lateral 

cyclic control. 

Figure 5. Rotor system response to 
longitudinal cyclic control. 

 

Figure 2. Rotor system response to 
thrust control. 

e tandem rotor helicopter is controlled longitudinally 
wit

o the control movements described above, 
com

II. Methodology 
The system iden ed in this project is 

the

cy-Response Method is well suited to the 
acc

The control movements are mixed to give the correct 
lateral cyclic and collective pitch motions to the rotors 
through the dual UBAs under each swashplate. The helicopter 
is controlled vertically with the thrust control lever. Thrust 
control inputs yield an equal and simultaneous increase or 
decrease in the pitch of all blades on both rotors, thereby 
causing the helicopter to ascend or descend vertically. Thrust 
control movements are illustrated in Figure 2. 

Directional control is achieved with the directional pedals 
by imparting equal but opposite (i.e., differential) lateral 
cyclic pitch to the forward and rear rotor blades respectively;  
thus causing the Tip Path Plane (TPP) of each rotor to tilt in 
opposite directions. For example, moving the right pedal 
forward causes the forward rotor TPP to tilt to the right, 
whereas the rear rotor TPP will tilt to the left, resulting in a 
clockwise directional moment about the center of gravity as 
illustrated in Figure 3. Conversely, a left pedal input causes a 
counter-clockwise directional moment.  

Figure 3. Rotor system response to 
directional pedals. 

Lateral control is achieved by applying equal lateral cyclic 
pitch to the blades with the cyclic control stick. Moving the 
cyclic control stick to the left results in both rotors’ TPP 
tilting to the left as illustrated in Figure 4. Conversely, a right 
cyclic input tilts both rotors’ TPP to the right. 

Th
h the cyclic control stick using Differential Collective 

Pitch (DCP); whereby the pitch of the forward and rear rotor 
blades are all collectively changed equally yet in the opposite 
direction. Moving the cyclic control stick forward 
simultaneously causes a decrease in collective pitch on the 
forward rotor and an increase in collective pitch on the rear 
rotor, thereby creating a nose-down pitching moment about 
the helicopter’s center of gravity as illustrated in Figure 5. 
Conversely, an aft cyclic input creates a nose-up pitching 
moment. 

In addition t
binations of directional pedal and lateral cyclic inputs 

generate unique motions of the helicopter, permitting the 
helicopter to directionally rotate about either the forward or 
rear rotor. This control flexibility makes the Chinook very 
maneuverable in tight quarters. 

tification approach us
 Frequency-Response Method, as illustrated in the 

flowchart in Figure 6 and implemented in the CIFER® 
package. Each of the elements of the flowchart will be 
briefly described in this section. A complete discussion of 
the flight testing and analysis methods is given by Tischler 
and Remple.10  

The Frequen
urate characterization of fixed-wing and rotary-wing 

aircraft dynamics from flight data. The resulting models are 
useful in a wide range of applications, including control 
system design, handling-qualities analysis, and the 
determination and validation of simulation math models. 
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Figure 7. CH-47F example frequency sweep flight test. 

gen

conducting the aircraft tests and 
col

rm a multi-variable spectral analysis of the data. This analysis, which is a multi-
input/multi-output (MIMO) matrix generalization of the simple single-input/single-output (SISO) FFT, is necessary 

 
The method uses dynamic response time-history test data (e.g., from flight, piloted simulation, bench tests) 
erated from pilot or computer generated inputs, such as sweeps or other inputs with good spectral content. These 

inputs excite the system vehicle dynamics, which could be an aircraft or any other physical system or subsystem 
(e.g., actuators, filters) of interest. In the CH-47 
project, both piloted and automated sweeps 
inputs were used. Details on frequency-sweep 
flight-testing methodology are given in Ham et 
al.11 A piloted longitudinal sweep time history 
for the CH-47F is shown in Figure 7. The 
frequency sweep begins at low frequency and 
increases smoothly in frequency until the 
maximum frequency is reached. This slow 
buildup in frequency ensures excitation of all 
dynamics within the frequency range of 
interest.  

After 
lecting measurement data, the next step is to 

check that the database is internally consistent 
and, to the extent possible, free of spurious 
noise before actually starting the identification 
process. The SMACK12 tool is used in this 
project for data consistency analysis, data 
reconstruction, and transfer of measurements to 
the aircraft center-of-gravity. 

The next step is to perfo
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Figure 6. System identification approach using frequency-response method.  
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for

orm is an advanced and flexible FFT algorithm that provides an 
acc

ate the applicability 
of 

xtraction of state-space or physical model structures. These model structures are formulated directly 
fro

 most aircraft system identification applications since real flight-test data inevitably involves multiple, partially 
correlated, control inputs during a single excitation maneuver. The MIMO frequency-response matrix constitutes a 
nonparametric model of the aircraft response, since it fully characterizes the input-to-output behavior without the 
need for defining a model structure or determining model parameters. An important by-product of this analysis is the 
coherence function, which provides key information about the frequency-response accuracy. When the dynamics 
contain nonlinear behavior, the frequency-response function as extracted using the Fourier transform is the 
describing function, which is the linear model that best characterizes the nonlinear behavior of the system.13 As 
shown in the flowchart, the nonparametric modeling results support many direct applications, including the design 
and analysis of flight control systems, stability margin determination, piloted handling-qualities analysis, and the 
validation and improvement of simulation models. These analyses were an important aspect of the CH-47F DAFCS 
development, but are not discussed in this paper.  

Two key features of the Frequency-Response Method as implemented in CIFER® are the chirp z-transform and 
composite window optimization. The chirp z-transf

urate frequency response over the frequency range of interest. Spectral windowing is a process by which the 
time-history data are segmented, and the frequency response is determined for each segment or window. By 
averaging the frequency responses from individual window segments, the effect of noise is reduced significantly. In 
composite windowing, repeated frequency-response determinations are carried out with varying spectral window 
lengths and these results are then combined using a numerical optimization procedure into a single result. Together, 
the chirp z-transform and composite window optimization methods produce a frequency-response database of 
exceptionally high accuracy and resolution over a broad dynamic range for real flight-test data.  

When parametric models are required, transfer-function modeling is a rapid and next logical step in the system 
identification procedure. In the present application, transfer-function modeling was used to evalu

quasi-steady (i.e., low-order) models (versus higher-order models that include rotor dynamics), and for 
determination of the speed damping derivatives (Xu and Yv). The values of the transfer-function gain, pole locations, 
and zero locations are determined numerically to provide a best match (in a least squares sense) to the frequency-
response data. Transfer-function models are often sufficient end-products of system identification for many 
applications.  

As in the present case for the CH-47 identification project, the end product for many system identification 
studies is the e

m the linearized 1st-order differential equations-of-motion as derived from Newton’s Second Law. The overall 
goal of this step is to determine a set of linear 1st-order differential equations constituting a model: 

 

uGxFxM +=&  (1) 

JuHxy +=  (2) 

 
whose frequency responses match the measured MIMO frequency-response data. Static trim data can also 

cluded in the model structure (as herein) to ensure that the static speed stability derivatives (Mu in this case) are 

raft studies consider the decoupled longitudinal and 
late

el parameters can be obtained from the 
tran

be 
in
consistent both with the dynamics and trim control behavior. 

The complexity of the selected state-space model structure (Eqs. (1)-(2)) depends on the aircraft dynamics and 
the intended application. For example, most fixed-wing airc

ral/directional dynamics – each represented by 3 degrees-of-freedom in 4 state equations. This approach is also 
satisfactory for characterizing the quasi-steady response of tandem helicopters (e.g., CH-47) and tilt-rotor aircraft 
(e.g., XV-15, V-22). The quasi-steady assumption models the rotor transient response as a simple equivalent time 
delay, and thus limits its applicability to low frequencies (below 6 rad/sec in the present case). Improved 
characterization of the response to higher frequencies as required for high-bandwidth flight control applications 
generally involves the explicit inclusion of the rotor/inflow equations-of-motion as demonstrated herein. As 
discussed in Ref. 10 for single rotor helicopters, the longitudinal/lateral-directional dynamics are fully coupled and a 
satisfactory model for flight control applications involves at least 18 states. 

The accuracy of this identified math model is quantified in a cost function, which is the weighted sum of the 
frequency-response magnitude and phase errors. Initial guesses for the mod

sfer-function identification results, a priori estimates based on first principles, or from rapid equation-error 
regression methods.14,15 A powerful and highly robust secant optimization algorithm is used to tune the 
identification parameters in the model structure (e.g., stability and control derivatives, time constants, time delays) 
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to minimize the identification cost function and thereby drive the model responses to the best match of the flight-test 
responses. The optimization stops when a minimum cost function value is reached that provides the best choice of 
identification parameters for the assumed model structure.  

At this stage in the process we have achieved a state-space model that best matches the MIMO frequency-
response database. Model structure determination finds the model that matches the test data with minimum model 
red

me-domain. For this, we would like to see an 
acc

ametric identification accuracy and 

5) entification of time delays 

ncy 

 many are demonstrated in the CH-47 study herein. 

A. Aircraft Instrumenta
The test aircraft was instrumented with an Airborne Data Acquisition System (ADAS) that performed the 

nctions: 

f selected parameters into the Pulse Code Modulation (PCM) stream for 

4) 
 Remote Multiplexer Unit (RMU) that conditioned and combined the data 

cha ls . This final data stream is recorded by the onboard Heim recorder permitting post 
flig

tion System (INS) (EGI) from both Channels 1 and 2. In addition, an instrumentation 
dat

undancy— thereby ensuring that the identified parameters are reliable and retain their physical meaning. The 
basis for this step is a sensitivity analysis to determine the accuracy and correlation of the parameters that have been 
identified. The key metrics for this study are the normalized Insensitivities and Cramer-Rao bounds, the latter being 
a good estimate of parameter accuracy. The sensitivity analysis can show, for example, that certain parameters are 
known accurately and should be retained in the model, while others have to be discarded because it is impossible to 
determine or isolate their values due to parameter correlation. Model structure determination, sensitivity analysis, 
and model reconvergence constitute an iterative loop that refines the structure of the model to ensure that it is both 
physically appropriate and accurate to within specified error bounds.  

With the completion of the model identification in the frequency-domain, it is necessary to verify that the model 
has good predictive capability and robustness to input shape in the ti

urate and direct comparison of predicted and measured time-responses to measured control-inputs that are 
completely different in character from those used in the identification. For example, if flight-test data from 
frequency-sweep inputs were used for the identification, then data from step or multi-step inputs might be used for 
verification. Evaluating the predictive accuracy for various input amplitudes is useful for assessing the acceptability 
of the identified linear model. Once the model has been verified, it can be used in the various applications shown. 

There are eight important features of the Frequency-Response Identification Method that make it especially well 
suited to system identification of flight vehicle dynamics from flight-test data:  

1) Unbiased frequency-response estimates when flight data contains process and output measurement noise 
2) Access to the coherence function as an unbiased measure of nonpar

system response linearity 
3) The wealth of knowledge concerning appropriate model structure provided by the nonparametric 

identification results 
4) Frequency ranges selected individually for each input/output pair to include only accurate data 

Direct and accurate id
6) Elimination of biases and reference shifts as identification parameters 
7) Significant improvement in computational efficie
8) Identification of systems with unstable dynamics 
These features are discussed in greater detail in Ref. 10 and

III. Instrumentation and Flight-Test Data Reduction 

tion 

following four data collection fu
1) Recording of all bus traffic from selected data busses 
2) Bus monitoring and placement o

real-time telemetry or post-flight analysis 
3) Recording of all transducer data 

Ethernet data recording 
All sensor signals were connected to a
nne  into a single PCM stream
ht processing of the data. 
Aircraft state data was recorded from the onboard Air Data Computer (ADC) and Embedded Global Positioning 

System (GPS)/Inertial Naviga
a boom assembly was installed on the nose of the helicopter to measure angle-of-attack, sideslip angle, airspeed, 

and altitude. The ELA commands and positions were recorded for both channels from FCC1 and FCC2 respectively. 
Each ILCA was also instrumented with a Linear Variable Differential Transducer (LVDT) at the primary boost 
actuator to get an accurate measure at the ILCA of the pilot’s control input.  
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Figure 9. Data consistency for angular rate 
measurements at hover. 
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Figure 10. Data consistency for angular attitude 
measurements at hover. 

B. ignal Processing and Reconstruction 
The time history signals used in the signal processing and reconstruction were taken from the PCM data stream 

corder. The time histories were interpolated to 125 Hz to correct for 
var

 (SAS) inputs. At this point, the SAS only shapes the excitation input and is not part 
of 

S

recorded on the aircraft's on-board Heim re
iations in the sample time. 
The inputs to the dynamic model are at the output of the mechanical mixer that combines piloted inputs and the 

Stability Augmentation System
the model. This input choice allows the bare-airframe model to be identified with the stability augmentation 

system on. The control inputs to the mixer were not instrumented, so the four mixer inputs were reconstructed using 
measurements upstream of the mixer. A block diagram of the reconstruction of the pitch-mixer input ( LONδ ) is 
shown in Figure 8. The gains were obtained from mechanical drawings of the control system, and measurements 
taken from actuator linkages by maintenance technicians. This diagram is representative of the roll, yaw and 
collective reconstructions (mechanical gains and conversions differ, and collective does not contain SAS actuators). 
The reconstruction of the pitch mixer input was verified using data from ground tests. This data set included eight 
static records of different longitudinal stick positions (recorded using string-pots) with both stability augmentation 
actuators at 0% and independent static measurements at the pitch-mixer input using a mechanical scale affixed to the 
input linkage; no pitch-mixer input dynamic data were recorded— making it impossible to quantify hysteresis or 
other dynamic effects in the linkages. Moreover, no static or dynamic data were available to verify reconstructions 
of the roll, yaw, or heave mixing-unit inputs. 
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Figure 8. Pitch mixer input reconstruction from upstream control positions. 

C. Data Consiste
The kinematic relationships between various measurements can be used to verify that the measurements are 

t, which is a necessary precursor for system identification analysis. As mentioned earlier in 
Sec

                         

ncy 

kinematically consisten
. II, the software tool SMACK was used for analysis of kinematic consistency, data reconstruction, and signal 

transfer to the center-of-gravity. If the data is kinematically consistent, the SMACK-reconstructed estimate of the 
signal and the measured signal should be nearly identical. 
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 The results of the kinematic data consistency analysis for a longitudinal manual sweep at the HGW (~48,000 lbs) 
hover condition are shown in Figure 9-Figure 12. Figure 9 and Figure 10 indicate that the angular rate and attitude 
measurements have good kinematic consistency. 

Once the accelerations were corrected to the center-of-gravity location from the sensor location, the accelerations 
demonstrated good kinematic consistency as seen in Figure 11. The velocities are also kinematically consistent as 
shown in Figure 12. 
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Figure 12. Data consistency for velocities at hover.
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Figure 11. Data consistency for accelerations at 
hover.   

IV. Quasi-Steady Model Formulation 
The helicopter is modeled as a rigid body, assuming symmetry about the X-Z plane, with the incorporation of 

equivalent time delays to represent unmodeled rotor dynamics. The linear and angular accelerations are referenced 
to the helicopter body-axis coordinate system as shown in Figure 13. 
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Figure 13. Helicopter body-axis coordinate system. 
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A. Selection of Frequency Responses used in the Quasi-Steady Model Identification 
The frequency responses for the longitudinal/heave dynamics are identified from the kinematically consistent 

frequency sweep data using CIFER  as described in Sec. II. The body-axis velocity-derivative signals and  are 
useful for state-space model identification and were reconstructed using the kinematic relationships shown in Eq. 

® u& w&
(3) 

and Eq. (4).
 

00 rvqwgau x +−−= θ&  (3) 

 

00 qupvaw z +−=&  (4) 

 
These reconstructed velocity derivatives were used in the identification rather than the velocity signals generated 

from the Embedded GPS/INS, which exhibited poor coherence.  

Table 2. Coherence for longitudinal/heave responses. 
Response LONδ  COLδ  

q  0.25 – 10 rad/sec none 

θ  0.25-8 rad/sec none 

xa  0.15-10 rad/sec 0.25-9 rad/sec 

za  (or w& ) none 0.15-10 rad/sec 

u&  0.2-10 rad/sec 0.8-9 rad/sec 

The accuracy of each frequency response was assessed with the coherence function.16 Coherence ( ) is a 
measure of the quality of the frequency content of a frequency response. Coherence values greater than 0.6 are 
considered acceptable. It is desirable that the on-axis bare-airframe responses have coherence greater than 0.6 in the 
range of ~0.1-10 rad/sec for the system identification of a quasi-steady model. Table 2 gives the regions of 
acceptable coherence for the bare-airframe frequency responses at the HGW hover condition. 

2
xyγ

Note that  and  are nearly the same at hover. The quality of the longitudinal/heave frequency responses is 
acceptable for purposes of system identification because there is good coherence for the on-axis responses over the 
frequencies of interest for flight dynamics and control (0.1-10 rad/sec). 

za w&

B. System Identification 
1. Quasi-Steady Model Structure 

The model structure for the state-space 
identification was chosen based on the 
frequency responses that were determined from 
flight data. The level of coupling was 
determined by examining the coherence of the 
off-axes responses. High coherence indicates a 
coupled response, whereas a low coherence 
indicates that the output in question was not 
excited by the control input. The frequency 
responses between longitudinal/heave commands and lateral/directional responses were of poor coherence, 
indicating that there is little coupling between these axes. Likewise, the frequency responses for lateral/directional 
commands and longitudinal/heave outputs also had poor coherence. Although the longitudinal cyclic input results in 
a torque split between the forward and aft rotors, which creates a yaw response, this coupling was not included in 
the model due to the low magnitude of this response. Therefore, the assumption of decoupled lateral/directional and 
longitudinal/heave dynamics was sufficient. This is consistent with the symmetric configuration of the tandem-rotor 
helicopter. Similar decoupling is seen in the XV-15 tilt-rotor.17  

Dynamic inflow in the collective responses is not included in the quasi-steady model, thereby restricting the 
frequency range of model fit for the vertical responses to the region near cross-over (0.2-3 rad/sec) where dynamic 
inflow does not have a large effect. A rotor-on-rotor torque mode in the longitudinal response was observed at ~7 
rad/sec. This mode was not included in the quasi-steady model, thereby restricting the frequency range of fit to 6 
rad/sec. The structure of the longitudinal/heave model is shown below:  
 

uGxFxM +=& (5)   
 

[ ]Tqwu θ=x (6)   
 

[ ]TCOLLON δδ=u (7)   
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Table 3. M-matrix for quasi-steady model. 

Parameter Value Cramer-Rao (%) Insensitivity (%) 

offsetZ  0.7879 30.47 8.034 

⎦⎣ 0100 ⎦⎣ 00 ⎥
⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎢
⎡

=
COLLON

COLLON

COLLON

MM
ZZ
XX

δδ

δδ

δδ

G (8), (9) 

Some stability and control derivatives in the above model structure were eliminated by analysis of the frequency-
response table of acceptable coherence (Table 2). The coherence for the responses COLq δ/  or a LONz δ/  is 
essentially zero, which indicates that there is no response for these input to output pairs. Therefore, the control 
derivatives for pitching moment and vertical velocity ( and ) that correspond to these responses should 
be eliminated (set to zero). The pitching moment derivative corresponding to the on-axis response to collective 
(w), , should also be eliminated. The vertical force derivatives that correspond to the on-axis response to 
longitudinal cyclic (u, q),  and  should also be eliminated. This method of model reduction based on the 
frequency-response table is described in the textbook by Tischler and Remple (Ref. 

COL
Mδ LON

Zδ

wM

qZuZ
10).  

2. Identification Results 
The 3-DOF longitudinal state-space model was determined using the CIFER® tool DERIVID (Sec. II). This tool 

was used to fit a state-space model to the frequency responses determined from the frequency-sweep flight data. The 
initial estimates for the stability derivatives were taken from a 6-DOF quasi-steady low-order simulation model of 
the tandem-rotor helicopter.  

The longitudinal speed-damping derivative ( ) was isolated using the approximation shown in Eq. uX (10).  
 

θguXu u −=&   (10) 

 
Then by performing a Laplace transform, the equation becomes:  

 

uXs
g

q
u

−
−

=
&

  (11) 

 
This approximation is valid at low frequency (0.2-2 rad/sec). A model of the form of Eq. (11) was identified 

from the frequency-response u  between 0.2-2 rad/sec using transfer-function fitting (refer to Sec. II for more 
details). The resulting value of  was then fixed in the state-space model.  

q/&

uX
Although the measurements were corrected to a point near the true center-of-gravity in the SMACK analysis of 

Sec. III.C, the exact center-of-gravity was unknown. Identification of a vertical center-of-gravity offset (from the 
estimated center-of-gravity) was implemented in order to correct the acceleration and velocity values to the true 
center-of-gravity location. The relationship between the measured velocity and the velocity at the center-of-gravity 
is represented by Eq. , which is implemented within the system identification by the M-matrix.  (12)

 

offsetcgm Zquu &&& −−=0   (12) 

 
Table 3 gives the identified vertical 

center-of-gravity offset. After the 
correction is included, the stability 
derivatives reflect the dynamics at the 
identified center-of-gravity location. The 
vertical center-of-gravity offset 
represents a discrepancy between the vertical position of the center-of-gravity and the point to which the velocities 
and accelerations were corrected from the EGI location. This offset is small, 0.7879 feet from the nominal center-of-
gravity, but its inclusion improves the system identification. Table 4 shows the identified F-matrix.  
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Table 4. F-matrix for quasi-steady model.  
Parameter Value Cramer-Rao (%) Insensitivity (%) 

uX (1/sec) -0.01890* N/A N/A 

wX 7.741e-3 27.02 13.26  (1/sec) 

qX (ft/sec) 0† N/A N/A 

uZ 0† N/A N/A  (1/sec) 

wZ -0.09929 17.48 8.364  (1/sec) 

qZ  (ft/sec) 0† N/A N/A 

uM 0.01672 6.518 1.690 (1/(sec-ft)) 

wM 0† N/A N/A (1/(sec-ft)) 

qM (1/sec) -1.306 7.213 1.751 
   * fixed derivative  
   † eliminated during model structure determination 

 
The stability derivative  was eliminated during model structure reduction (Sec. II), due to high insensitivity. qX

Table 4 indicates that the stability derivatives have good accuracy as shown by the low Cramer-Rao bounds and low 
insensitivity. 

Table 5 gives the identified control derivatives and time delays. The time delays are used to account for un-
modeled rotor dynamics. The control derivatives and time delays have good theoretical accuracy indicated by the 
low Cramer-Rao bounds and low insensitivities. The equivalent time delay COLτ  was identified with a negative 
value due to the lead caused by dynamic inflow. Since a negative time delay has no physical meaning, it was 
eliminated. 

 
Table 5. G-matrix for quasi-steady model. 

Parameter Value Cramer-Rao (%) Insensitivity (%) 

LON
X δ  (ft/sec2)/in 0.8852 11.22 2.944 

COL
X δ  (ft/sec2)/in 0.5686 3.121 1.530 

LON
Zδ  (ft/sec2)/in 0† N/A N/A 

COL
Zδ  (ft/sec2)/in -7.233 3.924 1.868 

2
LON

Mδ  (1/sec )/in 0.5159 3.228 1.207 
2

COL
Mδ  (1/sec )/in 0† N/A N/A 

LONτ  (sec) 0.07595 13.19 5.433 

COLτ  (sec) 0† N/A N/A 
† eliminated during model structure determination 
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Table 6 displays the comparative fit of the 
models to the flight data with a cost function. An 
average cost below 100 is acceptable. Table 6 
shows that the identified state-space model meets 
the requirement. The graphical overlays of the 
model against the flight data (and hybrid-model) 
will be discussed in Sec. 

Table 6. Costs for quasi-steady model. 

Transfer Function Cost 

LONu δ&  181.1 

LONq δ/  22.4 

LONxa δ/  109.2 

LONδθ /  166.3 

COLu δ&  40.0 

COLza δ  16.5 

COLxa δ  31.5 

Average 81.0 

V.D. 
A common problem in system identification of 

rotorcraft at hover is that the sign of  that 
results from matching the dynamic response data 
is not consistent with the trim data. Trim control 
data can be used to constrain the  stability 
derivative to achieve both a good dynamic and 
static model. In this case, it was determined that 
the constraint was not needed because the 
derivative as identified from the dynamic response 
data showed the correct sign (positive), without 
the constraint. However, the trim relationship was 
used to check the sign and magnitude of the 
identified  derivative. This relationship is 
given in Eq. 

uM

uM

uM
(13): 

 

⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ

Δ
−=

u
MM LON

u LON

δ
δ  (13) 

 
From trim flight data at 5-knot perturbations around hover, it was determined that:  
 

0168.0−=
Δ

Δ
u

LONδ
(14)   in/(ft/sec) 

 
Now,  can be calculated with Eq. uM (13) and Eq. (14): 
 

0087.0)0168.0(5159.0 =−−=
⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ

Δ
−=

u
MM LON

u LON

δ
δ  (15) 

 
This calculated value of  is similar to the identified value given in uM Table 4 ( M ). Although the 

identified value of  is larger (by a factor of ~2), it is of the appropriate sign and rough order of magnitude. This 
indicates that the identification of  is reasonably consistent with trim data.  

01672.0=u

uM

uM
3. Eigenvalues for the Quasi-Steady Model 

The eigenvalues that result from the identification are given in Table 7. There are two left-half-plane eigenvalues 
and a pair of complex poles in the right half plane. The complex poles at a frequency of 0.59 rad/sec (Eigenvalues 2 
and 3) are associated with a lightly unstable pitch phugoid mode. There is stable heave mode at low frequency 
(Eigenvalue 1) which is consistent with the value of . The left-half-plane eigenvalue at 1.5 rad/sec (Eigenvalue 
4) is the stable pitch-damping mode, which is related to the value of . 

wZ

qM
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Table 7. Eigenvalues of FM 1− for the quasi-steady model at hover, HGW.  

Eigenvalue Real Imaginary Zeta (ζ ) Omega ( nω ) 
(rad/sec) 

Mode 

1 -0.9928e-01 0.0000 0.0000 0.0000 Heave 

2 0.1059 0.5822 -0.1789 0.5918 

3 0.1059 -0.5822 -0.1789 0.5918 
Phugoid 

4 -1.5370 0.0000 0.0000 0.0000 Pitch-damping 
 

V. Higher-Order Dynamics 
As operational mission needs increasingly demand improved handling qualities for safe operations within a 

DVE, and performance requirements become more stringent as a result, future helicopter flight control systems will 
most likely employ high-gain, high-authority designs to meet these challenges.  

For some designs, using classical SISO design methods, neglecting the presence of higher-order dynamics could 
result in instabilities due to rotor-fuselage coupling. In addition, higher-bandwidth designs increase the likelihood 
that rotor dynamics will couple with the control system dynamics, thereby creating closed-loop instabilities. 

Therefore, the more accurately the identified state-space model matches the behavior of the real aircraft, the 
more robust the control design can be made across the operational envelope. With this understanding, system 
identification requirements were developed for high-bandwidth flight control designs.18 One of the requirements 
developed in Ref. 18, is that in order to achieve a robust control system design, the model must be accurate over a 
frequency range encompassing the intended crossover frequency. In order to determine this frequency range for 
model validity, one must consider dynamic modes near the crossover frequency. As a general rule, dynamic modes 
with frequencies within 0.3-3.0 times the crossover frequency will contribute significantly to the closed-loop 
response; therefore, the model must be accurate over this same range. 

For the present case then, the state-space model should be valid over the frequency range of approximately 0.9-
9.0 rad/sec due to the proximity of the rotor-on-rotor torque mode to the longitudinal axis gain crossover frequency. 
The goal of the higher-order modeling was to improve the frequency-domain match over this frequency range. 

A. Inflow-Coning Dynamics 
During a transient maneuver, unsteady aerodynamic forces cause the inflow through the rotor system to vary 

from that which is produced during steady level flight. This variation results in a change to the rotor system forces 
and moments, and therefore affects the rotor flapping response. Dynamic inflow theory seeks to globally model this 
unsteady aerodynamic effect following sudden changes in rotor blade pitch angle. A good review of dynamic 
inflow, including many excellent citations dealing with its affect upon the vertical response of the helicopter, is 
given by Gaonkar and Peters.19 The vertical response of the helicopter is dominated by three primary effects: heave 
damping, dynamic inflow, and rotor coning dynamics— each dominating in a different frequency range.  

COLza δ/The vertical response to the thrust control lever (i.e., collective), , is dominated at low frequencies (up 
to 1 rad/sec) by the first-order heave mode. Typical values of heave damping are 1.0−=wZ ; beyond this frequency 
range its influence becomes negligible. In the mid-frequency region, from about 1 to 12 rad/sec, the vertical 
response is dominated by the lead effect caused by dynamic inflow; and at higher frequencies, above 20 rad/sec, the 
vertical response is dominated by rotor coning dynamics. Looking at the COLw δ& response in Figure 20, beginning 
around 2 rad/sec and continuing out to 12 rad/sec, one can clearly see the lead effect of the dynamic inflow causing 
an approximate 7 dB increase in magnitude, as well as its associated phase delay; thus leading to the need to include 
an equivalent time delay in the model structure. 
1. Incorporation of Inflow-Coning Dynamics in the Vertical Axis 

20Chen and Hindson  developed several versions of equations-of-motion for various conditions of the coupled 
heave-inflow-coning dynamics for a single rotor helicopter. In Ref. 9, simplified forms of these equations were used 
in the SH-2G hybrid identification model and adopted herein. For this tandem-rotor system identification, these 
equations-of-motion were applied twice— written for the forward and rear rotors neglecting hinge offset and aircraft 
heave motion. In the vertical axis, the model structure was further simplified by assuming the inflow-coning 
dynamics were the same at both rotors (i.e., neglecting differences in shaft incidence angles, moment arms, and 
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load-sharing). Furthermore, rotor-on-rotor aerodynamic interference effects were not directly modeled and will be 
discussed later. Because the tandem-rotor helicopter is unique in that longitudinal cyclic inputs generate differential 
collective pitch, as described earlier (i.e., the rotor only sees "collective input" and does not discriminate whether 
that collective input came from the thrust lever or longitudinal stick), the equations-of-motion were modified to 
include the additional collective contribution made by longitudinal differential collective pitch. In the notation we 
distinguish the forward and rear rotor dynamics with the subscripts “F” and “R” respectively. Therefore, the 
dynamic inflow may be written for each rotor as: 
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and, 
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The control gains  and  transform collective and longitudinal control inputs into degrees of rotor blade 

pitch, respectively, and have units of deg/eq-in (converted to rad/eq-in for consistency with the model structure). 
These gains were set as free parameters during the identification process. The Carpenter-Fridovich dynamic inflow 
model factor ( = 0.639) was used for the hybrid model formulation, as it provided slightly better results. 

θK DCPK

0C
The frequency sweep inputs were approximately from 0.3 to 12.5 rad/sec, and therefore do not contain the 

dynamics associated with rotor coning which would occur around 24 rad/sec. However, the coefficients can be 
calculated and set as fixed parameters during the identification process. From Ref. 20, the coning dynamics are 
expressed as a second-order differential equation and are written for each rotor as follows: 
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and, 
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resulting in additional states for coning angle 0β  and coning rate  for each rotor. 0β&

The inflow-coning dynamics are coupled to the fuselage through the thrust coefficient  and aircraft mass , 
which take the place of the quasi-steady control derivative . This results in the hybrid model structure for the 
vertical dynamics as given in Eq. 

TC m

COL
Zδ

(20). 

 
American Institute of Aeronautics and Astronautics 

 

16



( ) ( )

HF
HR

TF

TR

z

x
flight path

horizon

lF lR

MF
MR

W

HF
HR

TF

TR

z

x
flight path

horizon

lF lR

MF
MR

W

Figure 14. Tandem-rotor longitudinal forces and 
moments.  
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However, Ref. 20 defines the thrust coefficient perturbation as: 
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Substituting the expression for dynamic inflow (without rotor subscripts) given in Eq. (16) into Eq. (21) yields 

the following perturbation equation for the thrust coefficient: 
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Notice how the dynamic inflow model factor C  cancels out and therefore has no direct effect in the vertical 
dynamics. Substituting Eq. 

0

(22) into Eq. (20) yields the final hybrid model structure for the vertical dynamics: 
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For simplicity, it was assumed that both rotors were at the same height (i.e., no stagger) and equally share the 

weight of the aircraft; resulting in a factor of 2 for the collective control term. Also, notice how the longitudinal 
differential collective pitch terms have cancelled 
out— leaving only the quasi-steady longitudinal 
control derivative as expected. 

LON
Zδ

2. Incorporation of Inflow-Coning Dynamics in 
the Longitudinal Axis 

The effects of dynamic inflow are also 
observed in the longitudinal COLxa δ/  
frequency response (Figure 19); and although the 
coherence was poor, the effect was also 
noticeable in the COLδθ /  frequency response. 

A general arrangement of the rotor forces and 
moments acting upon the helicopter in the 
longitudinal axis is presented in Figure 14. 
Recall that the summation of moments in the 
longitudinal axis is given by: 

 
 

  0:0 ===∑ qIIM yyyy &&&θ (24) 
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Therefore, by multiplying the thrust coefficient perturbation by the moment arm and dividing by the mass 
moment of inertia, we achieve a simple approximation for the thrust coefficient contribution to pitching moment 
given by:  
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Figure 15. Tandem-rotor longitudinal flapping. 

In the hybrid model structure, the thrust coefficient contribution replaces the  and  control 

derivatives as shown in Eq. 
COL

Mδ

(26). Note that the quasi-steady derivative  remains in the model structure for 
reasons to be discussed later. 

qM

 

RRTFFT TCTCqwu CMCMqMwMuMq ~~
−+++=&   (26) 

 
RF ll ≠Unlike the vertical axis, the effect of different moment arms (i.e., ) was included in the parameter 

constraints for the longitudinal axis. As before, the thrust coefficient perturbation is eliminated via substitution 
resulting in the final hybrid pitch acceleration equation: 
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(27) 

 
Referring to Figure 15, the effect of dynamic 

inflow in the quasi-steady u  acceleration equation 
is shown to be a function of the TPP longitudinal 
flapping. To get the linear acceleration contribution 
for the thrust coefficient, the thrust coefficient 
contribution in the vertical axis was multiplied by 

&

( ) cc 11sin ββ ≈  (using the small angle 
approximation); which results in a nonlinear 
product of state variables, assuming 

TCX  is 
constant, as shown below: 
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This nonlinear product between  and TC c1β  

must be linearized before inclusion in the quasi-
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21steady equation. Chen  developed complete equations describing the TPP dynamics for a single rotor helicopter; 
and in the hybrid identification model structure of Ref. 9, these expressions for TPP flapping are simplified, such 
that the longitudinal flapping equation is given by: 

 
  LONLATfsccf LONLATs

MfMfqMf δδτβββτ δδβ ++++−= 111 1
& (29) 

 
Although a tandem-rotor is free to flap longitudinally, it is not directly controlled by longitudinal cyclic; rather, it 

is a secondary effect of longitudinal differential collective pitch and therefore the LONLON
Mf δδ  term must be 

dropped from the flapping equation. Further, because the model is decoupled from the lateral/directional axes, the 
lateral axis terms must also be dropped. This results in a very simplified longitudinal flapping equation driven solely 
by pitch rate: 

 
  qfccf τββτ +−= 11

& (30) 

 
c1βGiven this result, it was decided not to further complicate the model structure by including  as a state 

variable; choosing rather to keep the quasi-steady pitch rate term qM  and include an equivalent time delay to 

represent the flapping time constant fτ . Linearizing Eq. (28) using the perturbation method about a steady-state 
hover yields: 
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The above result is incorporated into the linear acceleration equation for both rotors in lieu of the  control 

derivative. Substituting for 
COL

Xδ

TC~ , as previously done, the final hybrid-structure for the linear acceleration quasi-steady 
equation (assuming 

RcFcc 000 111 βββ == ) is: 
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B. Rotor-on-Rotor Dynamics 
As shown in Figure 16, the Chinook’s tandem-rotor arrangement overlaps the rotor diameters approximately 

34%. This configuration results in a considerable aerodynamic interference between the rotors, and between the 
rotors and fuselage. The rotor-fuselage interference effect, caused by the downwash of both rotors, is not explicitly 
accounted for in the model structure.  
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1. Rotor-on-Rotor Aerodynamic Interference Mode 
The individual vortex system generated by each rotor 

imparts an additional induced velocity on the other rotor. 

60 ft

34%
OVERLAP

60 ft

34%
OVERLAP

Figure 16. Tandem-rotor arrangement.

In an analytical model this is accounted for by using  
empirically derived interference factors based upon flight- 
test data. For this system identification, the effect is not 
explicitly modeled. However, the dynamic inflow effect is 
clearly present in the data. Therefore, the stability 
derivatives for the forward and rear inflow state equations 
were freed in the CIFER® identification process in an 
effort to account for this interference effect; rather than 
being constrained to the theoretical value.  
2. Rotor-on-Rotor Torque Mode 

As described in Sec. I.B.1, the forward and rear rotors 
are coupled together through the drive system. Miller and 
White,22 in modeling rotor-fuselage coupling effects for a 
CH-47B, examined the effects of drive system flexibility 
on control design and aircraft handling qualities. In Ref. 
22, Miller and White describe the combined effects of the 
two rotors, when considering coupled in-plane/fuselage 
dynamics, in terms of symmetric and anti-symmetric 
modes. Symmetric modes result in identical changes to 
both rotors, while anti-symmetric modes result in changes 
of opposite sign on the rotors. 

The rotor-on-rotor torque mode is therefore an anti-
symmetric in-plane mode characterized by the forward 
rotor lagging while the rear rotor is concurrently leading. 
The simultaneous lagging-and-leading motion of the rotor 
system associated with this anti-symmetric mode 
produces thrust and torque deviations of opposite signs on 
the two rotors. As a result, fuselage pitching and yawing 
moments are generated. If the drive system was able to 
rigidly connect the two rotors, then the rotor-on-rotor torque mode would occur at approximately 8 rad/sec; 
however, due to drive system flexibility this mode is softened to approximately 6.8 rad/sec. 

As shown later in Figure 17 and Figure 18, the rotor-on-rotor torque mode lag-lead effect is clearly seen in the 
LONu δ/& LONxa δ/ LONq δ/ LONδθ /, , , and  frequency responses at approximately 6.8 rad/sec. The original 3-DOF 

quasi-steady model is band-limited to 6 rad/sec in the longitudinal axis because it does not model the rotor-on-rotor 
dynamics. Unfortunately, no drive system parameters (i.e., torque, rotor RPM, etc.) were recorded concurrently with 
the frequency-domain flight testing; and no attempt was made at incorporating a drive system model into the state-
space formulation as it was not needed for the control development effort. 

The longitudinal/heave hybrid model was extended to include the rotor-on-rotor torque mode by appending a 
lag-lead network to the state-space model structure to fit the affected frequency responses. Rather than being 
incorporated directly into the state-space model structure, the lag-lead network was incorporated as a second order 
filter using CIFER®’s ability to model sensor dynamics. The NAVFIT tool within CIFER® was used to determine a 
second order transfer function fit to the affected frequency responses in the region of 4 to 10 rad/sec. The NAVFIT 
solution for the LONq δ/  frequency response was used as the initial estimate for the rotor-on-rotor torque mode 
numerator and denominator coefficients. All numerator and denominator sensor coefficients for the affected 
frequency responses were constrained to achieve a single solution for the lag-lead network used to represent this 
mode. 
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C. Selection of Frequency Responses used in the Higher-Order Hybrid Model Identification 

Table 8. Frequency range with usable coherence. 

Response LONδ  COLδ  

u&  0.15–13 rad/sec 0.8–9 rad/sec 

q  0.2–14 rad/sec none 

θ  0.15–10 rad/sec none 

xa  0.105–13 rad/sec 0.2–9 rad/sec 

za  (or w& ) 0.9–2.0 rad/sec 0.105–10 rad/sec 

For the higher-order identification, the frequency responses were regenerated from the original data without any 
additional filtering since data filtering was already performed by the data acquisition system. As a result, the 
coherence and usable frequency range were slightly improved. During the longitudinal doublet maneuver (shown 
later in Figure 21), it was observed that there was a vertical velocity response to the longitudinal cyclic control 
inputs at approximately 9 seconds (see Figure 23). Therefore, the only additional frequency response used in the 
higher-order identification was LONw δ/& . In 
general, the coherence for the LONw δ/&  
response was not good, but there was a useable 
range from approximately 1 to 2 rad/sec 
(average coherence of ~0.5). For the higher-
order system identification, the frequency range 
over the region of acceptable coherence is 
given in Table 8. 

D. System Identification 
1. Hybrid-Model Structure 

As described in Sec. V.A, the quasi-steady 
equations are extended using Eq. (23), (27), and 
(32). In addition, 6 new state equations are 
added to the state-space model: Eq. (16)-(19), plus two state equations capturing the kinematic relation between 
coning ( 0β ) and coning rate ( ) for each rotor. Whereas the quasi-steady model structure consisted of 4 state 
variables and 3 degrees-of-freedom for the rigid-body motion, the hybrid model structure consists of 12 state 
variables: (plus the two pseudo-states associated with the rotor-on-
rotor torque mode lag-lead network), and 6 degrees-of-freedom: 3-DOF for the rigid-body motion, 1-DOF for the 
dynamic inflow contribution, 1-DOF for rotor coning, and 1-DOF associated with the in-plane blade motion of the 
rotor-on-rotor torque mode. 

0β&

[ T
RF RFRF

qwu 0000 ββββυυθ &&=x ]

2. Identification Results 
The center-of-gravity offset ( ) that was determined in the 3-DOF quasi-steady model was fixed at its 

baseline value for the hybrid model identification. The final values for the stability and control derivatives of the 
hybrid model structure were determined using the DERIVID tool within CIFER

offsetZ

®. The hybrid state-space model was 
optimized using a minimum frequency of 1 rad/sec for the longitudinal axis and a global maximum frequency of 10 
rad/sec. Other minimum frequencies remained as reported in Table 8. However, for comparison with the quasi-
steady model, the insensitivity and Cramer-Rao percentages were calculated over the frequency range of 
approximately 0.1-10 rad/sec.  

The stability derivatives for the F-matrix are given in Table 9. Referring to Table 9, the two speed-derivatives 
 and , denoted with an (*), were initially freed during the DERIVID process, but were finally constrained to 

the baseline quasi-steady values because the variation and reduction in the cost function were insignificant. 
uX uM

Derivatives denoted with a (†) were eliminated during the model structure determination as a result of high 
insensitivity values. 

Derivatives denoted with a (‡) were proportionally constrained to other derivatives due to the underlying 
physics-based equations. As an example, referring to Eq. (27), notice that the higher-order stability derivatives 

, , and  are all scalar functions of since they share an underlying set of physical parameters. 

Accordingly then, these derivatives were constrained to  in order to maintain their physical relationships. 
R

Mυ F
Mυ

F
M

0β& R
M

0β&

F
Mυ

Derivatives denoted with a (§) were constrained to their theoretical values. For example, the coning dynamics, 
which occur at approximately the 1/rev frequency (~24 rad/sec), are not contained within the frequency sweep data 
as demonstrated by Table 8; therefore, the stability derivatives for the coning dynamics, expressed in Eq. (18)-(19), 
were fixed to their theoretical values. 

The results for the hybrid-model control derivatives are given in Table 10.  
 
 
 

 
American Institute of Aeronautics and Astronautics 

 

21



 

Table 9. F-matrix for higher-order hybrid model. 

Parameter Value Cramer- 
Rao (%) 

Insensitivity 
(%) Parameter Value Cramer- 

Rao (%) 
Insensitivity 

(%) 

uX (1/s) -0.0189* N/A N/A F
Mυ (1/(s-ft)) -0.04179 20.29 2.143 

wX (1/s) 6.951e-3 36.29 16.62 
F

M
0β& (1/s)) -0.8357‡ N/A N/A 

qX (ft/s) 0† N/A N/A R
Mυ (1/(s-ft)) 0.03776‡ N/A N/A 

F
Xυ (1/s) -0.03237‡ N/A N/A 

R
M

0β& (1/s) 0.7552‡ N/A N/A 

F
X

0β& (ft/s) -0.6406‡ N/A N/A F
Aυ (1/s) -9.173 6.89 1.473 

R
Xυ (1/s) -0.03237‡ N/A N/A 

F
A

0β& (ft/s) -149.0 7.04e-3 6.179 

R
X

0β& (ft/s) -0.6406‡ N/A N/A R
Aυ (1/s) -9.173‡ N/A N/A 

uZ (1/s) 0† N/A N/A 
R

A
0β& (ft/s) -149.0‡ N/A N/A 

wZ (1/s) -0.1053 16.34 7.445 
F

B
0β& (1/s) -26.16§ N/A N/A 

qZ (ft/s) -6.653 7.41 2.64 F
B

0β (1/s2) -555.2§ N/A N/A 

F
Zυ (1/s) 0.4002§ N/A N/A F

Bυ (1/s-ft) -1.163§ N/A N/A 

F
Z

0β& (ft/s) 8.004§ N/A N/A 
R

B
0β& (ft/s) -26.16§ N/A N/A 

R
Zυ (1/s) 0.4002§ N/A N/A R

B
0β (1/s2) -555.2§ N/A N/A 

R
Z

0β& (ft/s) 8.400§ N/A N/A R
Bυ (1/s-ft) -1.163§ N/A N/A 

uM (1/(s-ft)) 0.01672* N/A N/A     

wM (1/(s-ft)) 0† N/A N/A     

qM (1/s) -1.165 9.667 1.885     
* fixed derivative 
† eliminated during model structure determination 
‡ constrained to another derivative 
§ constrained to theoretical value  

 

Table 10. G-matrix for higher-order hybrid model. 

Parameter Value Cramer- 
Rao (%) 

Insensitivity 
(%) Parameter Value Cramer- 

Rao (%) 
Insensitivity 

(%) 

LON
X δ  (ft/s2)/in 0.7206 10.65 2.985 

COL
Xδ
ˆ  (ft/s2)/in 0.9810 4.836 1.614 

LON
Zδ  (ft/s2)/in 0.9836 10.76 4.134 

COL
Zδ
ˆ  (ft/s2)/in -12.20 4.148 1.505 

LON
M δ
ˆ  (1/s2)/in 0.6280 7.009 1.119 COL

M δ
ˆ  (1/s2)/in 0.02786 18.87 5.253 

LONFA δ (ft/s2)/in 27.05‡ N/A N/A COLFA δ (ft/s2)/in 52.02‡ N/A N/A 

LONFB δ  (1/s2)/in 10.37‡ N/A N/A COLFB δ  (1/s2)/in 19.94‡ N/A N/A 

LONRA δ (ft/s2)/in -27.05‡ N/A N/A COLRA δ  (ft/s2)/in 52.02‡ N/A N/A 

LONRB δ  (1/s2)/in -10.37‡ N/A N/A COLRB δ  (1/s2)/in 19.94‡ N/A N/A 
‡ constrained to another derivative 
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Table 12. Tau-matrix for higher-order hybrid model. 

Parameter Value Cramer-Rao 
(%) 

Insensitivity 
(%) 

LONτ  (sec) 0.04339 17.19 6.722 

COLτ  (sec) 0.02917 30.86 13.24 

Table 11. Coning and control gain determinations. 

Variable Value Theoretical 
Value 

Error 
(%) 

01cβ  (rad) 0.0402** 0.0369** 8.94 

θK  (rad/in) 0.03235 0.0325 0.46 

DCPK  (rad/in) 0.0168 0.0108 55.5 
** neglecting blade twist 

Table 13. Rotor-on-rotor torque mode coefficients. 

Parameter Value Cramer-Rao 
(%) 

Insensitivity 
(%) 

2n  0.1045 6.974 0.7881 

1n  0.1911 26.64 3.106 

0n  5.970 2.077 0.6011 

2d  0.08205 11.79 1.209 

1d  0.2915 30.08 2.285 

0d  4.554 3.534 0.7632 

Referring to Table 10, the control derivative was a free parameter. The steady-state coning angle 
COL

X δ
ˆ

01cβ , 

was calculated from the identified value of   using the relationship shown in Eq. 
COL

X δ
ˆ (32). 

The  control derivative was a free parameter in the DERIVID optimization process. The inflow and coning 

control derivatives for the collective axis were proportionally constrained to  due to underlying physical 

relationships. The control gain  is calculated from the identified  control derivative using the relationship 
shown in Eq. 

COL
Zδ
ˆ

COL
Zδ
ˆ

COL
Zδ
ˆ

θK
(23). 

The  derivative was also a free parameter. The inflow and coning control derivatives for the longitudinal 

axis were proportionally constrained to  due to underlying physical relationships. The control gain  is 

calculated from the  control derivative using Eq. 

LON
M δ
ˆ

LON
M δ
ˆ

DCPK

LON
M δ
ˆ (27). 

The values for 
01cβ , , and  

were calculated from the CIFER
θK DCPK

® results 
and are compared to theoretical values as 
shown in Table 11. 

The large error in  is due to a 
combination of factors: considering the 
rotors in isolation (i.e., neglecting rotor-
body and rotor-on-rotor aerodynamic 
interference effects) and uncertainty in the 
estimate for . 

DCPK

yyI

During the hybrid model structure 
determination, an equivalent time delay was 
included for the longitudinal axis (as 
described earlier to account for longitudinal 
flapping). In addition, an equivalent time 
delay was also included for the collective 
axis; as it was observed to improve the 
phase curve roll-off in the mid-frequency 
region due to the effect of dynamic inflow. 
The CIFER® identified time delays are given in Table 12. 

As discussed in Sec. V.B.2, the rotor-on-rotor torque mode is modeled as a second-order system given by: 
 

01
2

2

01
2

2)(
dsdsd
nsnsn

sR
++

++
=   (33) 

 
During the identification process of    

fitting the hybrid model in the range of the 
rotor-on-rotor torque mode for the 

LONu δ& LONq δ/ LONxa δ/ LONδθ / , , ,  
responses, it was observed that the linear 
acceleration responses and angular 
accelerations would have resulted in 
slightly different 2nd order dynamics if 
each pair had been optimized separately. 
This anomaly was observed by the 
Army/Boeing test team when examining 
short-term linear accelerations resulting 
from pitch attitude changes; it is suspected 
that these variations are due to external 
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disturbances. Regardless, the numerator and denominator sensor coefficients were constrained across all four 
frequency responses to ensure a single lag-lead network was identified representing the rotor-on-rotor torque mode. 
The coefficients for the rotor-on-rotor torque mode and their theoretical accuracy metrics are given in Table 13. 

 Table 14 provides a comparison of the cost functions for both models over the frequency range for which each 
was optimized, as well as over the entire range containing acceptable coherence. As stated earlier, an average cost 
function below 100 is acceptable to ensure that the model fits well with the frequency-domain flight-test data. The 
goal of the higher-order model system identification was to extend the quasi-steady model to higher frequencies 
while improving both the frequency response fit and cost. Over the range of 1-10 rad/sec, for which it was 
optimized, the hybrid model has an average cost function of 29.0. 

Table 14. Comparison of cost function between models. 
Cost 

(MIN to 6 rad/sec) 
Cost 

(MIN to 10 rad/sec) 
Cost 

(1 to 10 rad/sec) Transfer  
Function 

Quasi-steady Hybrid Quasi-steady Hybrid Quasi-steady Hybrid 

LONu δ&  181.1 172.3 185.4 155.5 62.1 17.1 

LONq δ/  22.4 9.7 60.3 14.5 60.3 14.5 

LONxa δ/  109.2 111.0 114.3 102.5 88.2 57.5 

LONδθ /  166.3 155.1 149.0 137.3 33.8 12.4 

LONw δ&  N/A 21.2 N/A 21.2 N/A 21.2 

COLu δ&  40.0 30.5 180.3 34.0 189.0 22.0 

COLza δ  16.5 27.8 131.7 29.9 227.9 35.2 

COLxa δ  31.5 52.9 96.3 53.2 140.2 52.7 

Average 81.0 67.2 117.7 63.6 103.7 29.0 
 

 
3. Comparison of Frequency-Response Matches to Flight Data and Quasi-Steady Model. 

Although each model was optimized across overlapping, yet different frequency ranges, for comparison purposes 
the two models are overlaid with the flight-test data over the frequency range of approximately 0.1-10 rad/sec. 
Recall that some frequency responses were truncated around 1 rad/sec due to poor coherence below this frequency. 
Figure 17-Figure 20 show comparisons of both the quasi-steady and hybrid model to the flight data. 

In Figure 17-Figure 18, one can see that both models match well over the frequency range for which each was 
optimized. For LONu δ& LONδθ / and  the identified models match the flight data well in the magnitude at low and 
mid-frequencies, but the phase response does not fit as well at low frequency. There is poor coherence at low 
frequency (where mismatch occurs), indicating that the frequency response from flight data may be distorted due to 
nonlinearities. DERIVID also de-weights low coherence segments of the frequency response, because the flight data 
is less accurate here. The combination of possible distortion due to nonlinearities and de-weighting of the data is 
likely the cause of the mismatch in phase and magnitude at low frequency. 

As expected, the hybrid model shows an improved fit to the rotor-on-rotor torque mode around 7 rad/sec in all of 
the longitudinal responses. Although the hybrid model was optimized from 1-10 rad/sec, the quality of the fit below 
1 rad/sec is not significantly worse than the quasi-steady model, which included data between 0.25-6 rad/sec. 
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Flight results

LNVRT0HCIR56 Id:6-DOF HYBRID MODEL

LONV0HMOD7Af Id:3-DOF QUASI-STEADY MODEL (with extended frequency range)
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Figure 17. Comparison of quasi-steady and hybrid-model to flight data for LONu δ&  and LONxa δ/ . 

 
 

Flight results

LNVRT0HCIR56 Id:6-DOF HYBRID MODEL

LONV0HMOD7Af Id:3-DOF QUASI-STEADY MODEL (with extended frequency range)
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Figure 18. Comparison of quasi-steady and hybrid-model to flight data for LONq δ/  and LONδθ / . 
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Flight results

LNVRT0HCIR56 Id:6-DOF HYBRID MODEL

LONV0HMOD7Af Id:3-DOF QUASI-STEADY MODEL (with extended frequency range)
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Figure 20. Comparison of quasi-steady and hybrid-model to flight data for LONw δ&  and COLw δ& . 

 

Flight results

LNVRT0HCIR56 Id:6-DOF HYBRID MODEL
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Figure 19. Comparison of quasi-steady and hybrid-model to flight data for COLu δ&  and . COLxa δ



COLu δ& COLxa δFigure 19 shows that both models match the  and  flight data for the range of frequencies used 
in each identification. Recall that for the quasi-steady model the frequency range was band-limited to 3 rad/sec so as 
to preclude the effects of dynamic inflow. However, for comparison purposes with the hybrid model the frequency 
range of the quasi-steady model was extended. The two models are compared up to a maximum frequency of 10 
rad/sec. Between 2-10 rad/sec, it is observed that the hybrid model provides an improved fit in both magnitude and 
phase due to the inclusion of dynamic inflow. 

COLw δ/&As shown in Figure 20, the  frequency response for both models fit the flight data well over their 
respective identification ranges. Because the quasi-steady model truncated the frequency to 3 rad/sec during the 
identification process, the phase roll-off observed at slightly higher frequencies is not present; as a result there was 
no need to model a time delay. Again, the hybrid model shows an improved fit in both magnitude and phase at 
higher frequencies as a result of including dynamic inflow. 
4. Eigenvalues for the Hybrid Model 

Table 15 presents the eigenvalues for the higher-order state-space model structure and Table 16 gives the roots 
for the second-order system used to model the rotor-on-rotor torque mode. Referring to Table 15, there are six real 
roots and three complex pairs for the hybrid state-space model.  

The two poles at the origin (Eigenvalues 1 and 2) are integrators associated with coning kinematics. Eigenvalue 
3 is the stable heave mode and its value is consistent with that of   in Table 9. The complex poles (Eigenvalues 4 
and 5) at a frequency of 0.614 rad/sec, are associated with a lightly unstable pitch phugoid mode. The left-half-plane 
pole at 1.43 rad/sec (Eigenvalue 6) is the stable (short-period) pitch-damping mode. The eigenvalues associated with 
inflow-coning dynamics result in identical values at the forward and rear rotors due to the simplifying assumptions 
described earlier, and will therefore be discussed collectively for both rotors.  

wZ

Table 15. Eigenvalues of FM 1− for the higher-order hybrid model at hover, HGW. 

Eigenvalue Real Imaginary Zeta (ζ ) Omega ( nω ) 
(rad/sec) 

Mode 

1 0.0000 0.0000 0.0000 0.0000 N/A 

2 0.0000 0.0000 0.0000 0.0000 N/A 

3 -0.1051 0.0000 0.0000 0.0000 Heave 

4 0.1238 0.6009 -0.2017 0.6135 

5 0.1238 -0.6009 -0.2017 0.6135 
Phugoid 

6 -1.4312 0.0000 0.0000 0.0000 Pitch-damping 

7 -16.3475 0.0000 0.0000 0.0000 Fwd. Rotor Inflow 

8 -16.3475 0.0000 0.0000 0.0000 Rear Rotor Inflow 

9 -9.4913 14.8802 0.5378 17.6495 

10 -9.4913 -14.8802 0.5378 17.6495 
Fwd. Rotor Coning 

11 -9.4913 14.8802 0.5378 17.6495 

12 -9.4913 -14.8802 0.5378 17.6495 
Rear Rotor Coning 

 
The left-half-plane poles (Eigenvalues 7 and 8) at 16.347 rad/sec, are the forward and rear rotor inflow mode. 

The CIFER® identified inflow mode compares very well with the dynamic inflow research from Ref. 20. The stable 
complex pair (Eigenvalues (9, 10) and (11, 12)) are associated with the rotor flapping (coning) mode. In Ref. 20, 
Chen and Hindson show that when dynamic inflow is not included in the model structure, the frequency of the 
flapping mode occurs at approximately the 1/rev frequency; whereas this frequency is reduced when dynamic inflow 
is included. Furthermore, their research showed that variations in blade Lock number and thrust coefficient also 
cause the roots of this mode to migrate. For the values used in the hybrid model system identification ( 8.8=γ and 

), the eigenvalues for the flapping mode compare well with their research.  007.0
0

=TC
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Table 16. Rotor-on-rotor torque dynamics. 

 Real Imaginary Zeta (ζ ) Omega ( nω ) 
(rad/sec) 

-0.9142 7.5023 0.1210 7.5578 
Numerator 

-0.9142 -7.5023 0.1210 7.5578 

-1.7765 7.2352 0.2385 7.4501 
Denominator 

-1.7765 -7.2352 0.2385 7.4501 

 
The rotor-on-rotor torque mode is described as a stable, yet lightly damped mode resulting from the forward 

rotor lagging while the rear rotor is leading. The result of modeling this mode as a lag-lead network yields a lightly 
damped complex-pair of zeroes, and complex-pair of poles— which agree with the description. The identification 
process results in a natural frequency of 7.45 rad/sec for this mode, which is within 10% error of the Boeing 
accepted value of 6.78 rad/sec. However, the identified mode frequency of 7.45 rad/sec does compare well with 
analytical results (~8.0 rad/sec) when a rigid drive system is assumed. 

E. Time-Domain Verification 
As discussed in Sec. II, the state-space hybrid model is verified against flight-test data which was not used in the 

identification process. Doublet maneuvers are preferred for verification purposes since the aircraft approximately 
returns to the initial trim state. In Figure 23 and Figure 24, the hybrid and quasi-steady models are compared to 
flight data for the longitudinal and collective doublets depicted in Figure 21 and Figure 22, respectively. For the 
longitudinal doublet maneuver, the hybrid model matches the aircraft vertical velocity very well, and tracks the 
vertical acceleration well—except for a slight over-prediction around 9 sec resulting from the collective input made 
at that moment. Both models match the longitudinal acceleration very well, but the quasi-steady model provides a 
closer match to the pitch rate, pitch attitude, and longitudinal velocity. Upon closer examination of these responses, 
the hybrid model produces a larger response to longitudinal inputs that the flight data. This can be seen in the 
frequency-domain as a slight over prediction in magnitude at low frequencies. 

For the collective doublet, both models provide an excellent match to the aircraft response— this in spite of the 
band-limitation imposed on the quasi-steady model. However, examining the vertical acceleration response more 
closely, one can see that the hybrid model better matches the peak accelerations. For the vertical velocity response, 
the hybrid model is almost an exact match— which upholds the simplifying assumptions made in the dynamic 
inflow model for the vertical axis. 
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Figure 21. Longitudinal doublet at mixer. 

Time Histories      Event:      30      Start time:        6.000
Weighting: C            Flight:     21      Stop time:        16.000
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Figure 22. Collective doublet at mixer. 
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Time Histories      Event:      11      Start time:        5.000
Weighting: C            Flight:     22      Stop time:        15.000

Flight data

LNV0HM7A Id:Verification of Quasi-Steady Model Longitudinal Axis
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Figure 23. Comparison of quasi-steady and hybrid model for the longitudinal doublet. 

 
Time Histories      Event:      30      Start time:        6.000
Weighting: C            Flight:     21      Stop time:        16.000

Flight data

LNV0HCIR Id:Verification of Coning/Inflow/Rotor-on-Rotor Dynamics

LNV0HM7A Id:Verification of Quasi-Steady Model Heave Axis
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Figure 24. Comparison of quasi-steady and hybrid model for the collective doublet.  

 
 

 
American Institute of Aeronautics and Astronautics 

 

29



F. Discussion 
This paper has developed two models of the CH-47F longitudinal response in hover. As can be seen by 

comparison with the on-axis flight response in Figure 18, the quasi-steady model provides an accurate representation 
up to a frequency of about 6 rad/sec. The more complex higher-order model extends the frequency range of 
applicability to 10 rad/sec. This section will consider the limitations of these models for flight control analysis and 
design. 

G(s)

H(s)

SAS

Aircraft

Pilot inputs Response
G(s)

H(s)

SAS

Aircraft

Pilot inputs Response

Figure 25. Simplified control schematic.

A simple schematic diagram for the CH-47F flight control system is depicted in Figure 25. Pilot inputs are 
connected directly to the aircraft actuators via mechanical links. The combined aircraft and actuator system is 
represented by G(s) as obtained from the identification 
results. The stability and control augmentation system 
(SAS) provides improved stability, control response, 
and disturbance rejection. The SAS, represented by 
H(s), receives pilot commands and aircraft response 
measurements and generates additional input that is 
summed with the pilot’s input via the ILCA SAS 
actuators. 

Figure 26 shows the root locus for the pitch rate 
feedback loop using the higher-order (hybrid) model. 
The bare-airframe pitch damping (Mq) is represented 
by the real pole at –1.43 rad/sec. Pitch rate feedback increases the damping to a value of –4 rad/sec for the nominal 
feedback gain of Kq = 7. The associated 0 dB crossover frequency is about 3.5 rad/sec with a phase margin of about 
45 deg. At the same time the damping of the rotor coning dynamics is decreased to ζ = 0.3. The values of rotor 
damping ratio and control system phase margin are at the limits of the MIL-F-9490D and ADS-33 limits, 
respectively, and suggest no further increases in gain are possible with the current PID feedback architecture. 
Instability is reached at a gain of Kq = 32.4, giving an ample gain margin of 13.3 dB. 
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Figure 26. Root-locus for hybrid model. 

   
The analogous pitch rate root locus for the quasi-steady model is shown in Figure 27. The pitch damping mode 

(Mq) is essentially the same as for the higher-order model. For the nominal gain, the predicted crossover frequency 
and phase margin is in agreement with the higher-order model. The gain margin is determined as 15.5 dB, which is 
somewhat over-predicted as compared to the more accurate higher-order model, but in either case the gain margin is 
quite sufficient. 
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Figure 27.  Root-locus for quasi-steady model. 

The results herein indicate that the quasi-steady model is adequate for flight control analysis and design studies 
as documented in Ref. 8. However, the rotor dynamics are at the minimum of the requirement for damping ratio. 
Increased control system performance would be desirable for future CH-47 configurations; to achieve tighter 
command response and disturbance rejection would require a higher crossover frequency. This is achievable by 
trading off the excess gain margin for some increased phase margin, while carefully tailoring the influence on the 
rotor dynamics damping. Such studies would clearly require the use of the higher-order hybrid model. 

VI. Conclusion 
System identification studies were conducted based upon the frequency-domain flight-test data. State-space 

dynamics models of the CH-47F bare-airframe responses were determined for three weight conditions in hover and 
forward flight. Subsequently, the quasi-steady model was extended to include higher-order dynamics for the HGW 
configuration at hover. Both models provide a good representation of the CH-47F based on frequency-domain and 
time-domain comparisons. The following conclusions are drawn from this effort: 

1) The CIFER® methodology to identifying a comprehensive state-space model at various airspeeds provides 
a simple and cost-effective approach to DAFCS development for the CH-47F. 

2) A simple decoupled 3-DOF quasi-steady model proved to be sufficient for modeling the key flight 
mechanics of the CH-47F. 

3) Additional degrees of freedom are necessary to better model the higher-order dynamics associated with 
dynamic inflow, rotor coning dynamics, and rotor-on-rotor dynamics. 

4) A second-order lag-lead filter, optimized in the region of the mode, is sufficient to model the rotor-on-rotor 
torque dynamics. The availability of explicit engine torque/RPM dynamic data would have provided 
additional physical insight into the coupling of the rotor and drive systems, and would have permitted the 
modeling of the drive system dynamics directly into the state-space model structure. 

5) The quasi-steady model is adequate for ongoing moderate gain control system designs. The higher-order 
model should be used for future high gain design studies. 
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