Econ 1A: Chapter 7 (Study Plan: Section 7Q: multiple choice quiz - Quiz 6, 7 and 8.)
Quiz 6: If NGDP increases by 5\% a year and the GDP price index (GDP deflator) rises by 2% a year, then RGDP increased by \qquad .
Quiz 7: When CPI increases from 200 in 2010 to 210 in 2011 and the nominal wage rate (W) is constant at $\$ 10$ an hour, the real wage rate (w) (increases or decreases) by \qquad .
Quiz 8: When the price level is rising (π) at \qquad and the real interest rate (r) is 1% a year, the nominal interest rate (i) is 3% a year.
Answer:

1. Since (NGDP/GDP price index) x $100=$ RGDP, we can find that $\%$ change in NGDP - \% change in GDP price index $=\%$ change in RGDP.

For example,

	NGDP	GDP price index	RGDP.
2010	100	100	100
2011	105	102	103.

\% change in NGDP $=\{[\operatorname{NGDP}(2011)-\operatorname{NGDP}(2010)] / \operatorname{NGDP}(2010)\} \times 100 \%$

$$
=[(105-100) / 100] \times 100 \%=5 \% .
$$

\% change in GDP Price index =
\{[GDP price index (2011) -GDP Price index (2010)]/GDP price index (2010)\}x100\%
$=[(102-100) / 100] \times 100 \%=2 \%$.
\% change in $\operatorname{RGDP}=\{[\operatorname{RGDP}(2011)-\operatorname{RGDP}(2010)] / \operatorname{RGDP}(2010)\} \times 100 \%$

$$
=[(103-100) / 100] \times 100 \%=3 \% \text {. }
$$

It is easy to see that the answer will be $5 \%-2 \%=3 \%$.
2. Since [nominal wage $(\mathrm{W}) / \mathrm{CPI}] \times 100=$ real wage (w), we can find that
$\%$ change in $\mathrm{W}-\%$ change in $\mathrm{CPI}(\pi)=\%$ change in w
According to Quiz 7, $\pi=[(210-200) / 200] \times 100 \%=5 \%$ and $\%$ change in $W=[(10-10) / 10] \times 100 \%=0 \%$, therefore, we can find that
$\%$ change in $w=\%$ change in $\mathrm{W}-\%$ change in CPI $(\pi)=0 \%-5 \%=-5 \%$ and conclude that the real wage decreases by 5%.

For example,

	W	CPI	$\mathrm{W}=(\mathrm{W} / \mathrm{CPI}) \times 100$
2010	$\$ 10$	200	$(\$ 10 / 200) \times 100=\$ 5$
2011	$\$ 10$	210	$(\$ 10 / 210) \times 100=\$ 4.76$.

$$
\begin{aligned}
& \begin{array}{l}
\% \text { chane in } \mathrm{W}= \\
\% \text { change in } \mathrm{CPI}(\pi)=\{[\mathrm{W}(2011)-\mathrm{W}(2010)] / \mathrm{W}(2010)\} \times 100 \%=[[(10-10)] / 10\} \times 100 \%=0 \% . \\
\quad=[(210-200) / 200] \times 100 \%=5 \% \\
\% \text { change in } \mathrm{w}=\{[\mathrm{w}(2011)-\mathrm{w}(2010)] / \mathrm{w}(2010)\} \times 100 \%=[(4.76-5) / 5] \times 100 \% \\
\quad=(-0.24 / 5) \times 100 \% \approx-5 \% .
\end{array}
\end{aligned}
$$

3. Applying $\mathrm{i}-\pi=\mathrm{r}$, we at once obtain that $\pi=\mathrm{i}-\mathrm{r}=3 \%-1 \%=2 \%$.
