
\qquad
\qquad
\qquad

Chapter 4:
Prediction, Goodness-of-Fit, and Modeling Issues
- 4.1 Least Squares Prediction
- 4.2 Measuring Goodness-of-Fit
- 4.3 Modeling Issues
- 4.4 Log-Linear Models

4.1 Lazst squares Praciction	
$y_{0}=\beta_{1}+\beta_{2} x_{0}+e_{0}$	(4.1)
where e_{0} is a random error. We assume that $E\left(y_{0}\right)=\beta_{1}+\beta_{2} x_{0}$ and $E\left(e_{0}\right)=0$. We also assume that $\operatorname{var}\left(e_{0}\right)=\sigma^{2}$ and $\operatorname{cov}\left(e_{0}, e_{i}\right)=0 \quad i=1,2, \ldots, N$ $\hat{y}_{0}=b_{1}+b_{2} x_{0}$	
(4.2)	

\qquad

4.1 Least Squares Prediction

$$
f=y_{0}-\hat{y}_{0}=\left(\beta_{1}+\beta_{2} x_{0}+e_{0}\right)-\left(b_{1}+b_{2} x_{0}\right)
$$

$E(f)=\beta_{1}+\beta_{2} x_{0}+E\left(e_{0}\right)-\left[E\left(b_{1}\right)+E\left(b_{2}\right) x_{0}\right]$

$$
=\beta_{1}+\beta_{2} x_{0}+0-\left[\beta_{1}+\beta_{2} x_{0}\right]=0
$$

| $\operatorname{var}(f)=\sigma^{2}\left[1+\frac{1}{N}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{\sum\left(x_{i}-\bar{x}\right)^{2}}\right] \quad$ (4.4) |
| :--- | :--- |

\qquad
\qquad

4.1 Least Squares Prediction

The variance of the forecast error is smaller when
i. the overall uncertainty in the model is smaller, as measured by the variance of the random errors ;
ii. the sample size N is larger;
iii. the variation in the explanatory variable is larger; and
iv. the value of is small. \qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

4.1.1 Prediction in the Food Expenditure Model

$\hat{y}_{0}=b_{1}+b_{2} x_{0}=83.4160+10.2096(20)=287.6089$
$\widehat{\operatorname{var}(f)}=\hat{\sigma}^{2}\left[1+\frac{1}{N}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{\sum\left(x_{i}-\bar{x}\right)^{2}}\right]$
$=\hat{\sigma}^{2}+\frac{\hat{\sigma}^{2}}{N}+\left(x_{0}-\bar{x}\right)^{2} \frac{\hat{\sigma}^{2}}{\sum\left(x_{i}-\bar{x}\right)^{2}}$
$=\hat{\sigma}^{2}+\frac{\hat{\sigma}^{2}}{N}+\left(x_{0}-\bar{x}\right)^{2} \widehat{\operatorname{var}\left(b_{2}\right)}$
$\hat{y}_{0} \pm t_{c} \operatorname{se}(f)=287.6069 \pm 2.0244(90.6328)=[104.1323,471.0854]$

4.2 Measuring Goodness-of-Fit

4.2 Measuring Goodness-of-Fit

$$
\hat{\sigma}_{y}^{2}=\frac{\sum\left(y_{i}-\bar{y}\right)^{2}}{N-1}
$$

4.2 Measuring Goodness-of-Fit
$\hat{\sigma}_{y}^{2}=\frac{\sum\left(y_{i}-\bar{y}\right)^{2}}{N-1}$
$\sum\left(y_{i}-\bar{y}\right)^{2}=\sum\left(\hat{y}_{i}-\bar{y}\right)^{2}+\sum \hat{e}_{i}^{2}$
(4.11)

\qquad

4.2 Measuring Goodness-of-Fit

- $\quad \Sigma\left(y_{i}-\bar{y}\right)^{2}=$ total sum of squares $=$ SST: a measure of total variation in y about the sample mean.
- $\sum\left(\hat{y}_{i}-\bar{y}\right)^{2}=$ sum of squares due to the regression $=$ SSR: that part of total variation in y, about the sample mean, that is explained by, or due to, the regression. Also known as the "explained sum of squares."
- $\sum \hat{e}_{i}^{2}=$ sum of squares due to error $=$ SSE: that part of total variation in y about its mean that is not explained by the regression. Also known as the unexplained sum of squares, the residual sum of squares, or the sum of squared errors.
- $\operatorname{SST}=$ SSR + SSE

4.2 Measuring Goodness-of-Fit

\square

$$
R^{2}=\frac{S S R}{S S T}=1-\frac{S S E}{S S T}
$$

- The closer R^{2} is to one, the closer the sample values y_{i} are to the fitted regression \qquad equation $\hat{y}_{i}=b_{1}+b_{2} x_{i}$. If $R^{2}=1$, then all the sample data fall exactly on the fitted least squares line, so $S S E=0$, and the model fits the data "perfectly." If the sample data for y and x are uncorrelated and show no linear association, then the leas squares fitted line is "horizontal," so that $S S R=0$ and $R^{2}=0$.

4.2.2 Correlation Analysls and \boldsymbol{R}^{2}

$$
\begin{aligned}
& r_{x y}^{2}=R^{2} \\
& R^{2}=r_{y \dot{y}}^{2}
\end{aligned}
$$

R^{2} measures the linear association, or goodness-of-fit, between the sample data and their predicted values. Consequently R^{2} is sometimes called a measure of "goodness-of-fit."

4.2.3 The Food Expenditure Example
$S S T=\sum\left(y_{i}-\bar{y}\right)^{2}=495132.160$
$S S E=\sum\left(y_{i}-\hat{y}_{i}\right)^{2}=\sum \hat{e}_{i}^{2}=304505.176$
$R^{2}=1-\frac{S S E}{S S T}=1-\frac{304505.176}{495132.160}=.385$
$r_{x y}=\frac{\hat{\sigma}_{x y}}{\hat{\sigma}_{x} \hat{\sigma}_{y}}=\frac{478.75}{(6.848)(112.675)}=.62$
Principles of Economerrics, 3rd Edition

\qquad

4.2.4 Reporting the Results

- FOOD_EXP = weekly food expenditure by a household of size 3 , in dollars
- INCOME = weekly household income, in $\$ 100$ units

$$
\text { FOOD_EXP }=83.42+10.21 \text { INCOME } \quad R^{2}=.385
$$

(se) $\quad(43.41)^{*}(2.09)^{* * *}$

* indicates significant at the 10% level
** indicates significant at the 5% level
*** indicates significant at the 1% level

4.3 Modeling Issues

- 4.3.1 The Effects of Scaling the Data
\qquad
- Changing the scale of x :
$y=\beta_{1}+\beta_{2} x+e=\beta_{1}+\left(c \beta_{2}\right)(x / c)+e=\beta_{1}+\beta_{2}^{*} x^{*}+e$ \qquad
where $\beta_{2}^{*}=c \beta_{2}$ and $x^{*}=x / c$
- Changing the scale of y :
$y / c=\left(\beta_{1} / c\right)+\left(\beta_{2} / c\right) x+(e / c)$ or $y^{*}=\beta_{1}^{*}+\beta_{2}^{*} x+e^{*}$
etrics, 3rd Edition

4.3.2 Choooing a Functional Form

Variable transformations:

\qquad

- Power: if x is a variable then x^{p} means raising the variable to the power p; examples are quadratic $\left(x^{2}\right)$ and cubic $\left(x^{3}\right)$ transformations. \qquad
- The natural logarithm: if x is a variable then its natural logarithm is $\ln (x)$
\qquad
\qquad
\qquad
\qquad

4.3.2 Choosing a Functional Form

Figure 4.5 A nonlinear relationship between food expenditure and income

4.3.2 Choosing a Functional Form

- The log-log model
$\ln (y)=\beta_{1}+\beta_{2} \ln (x)$
The parameter β is the elasticity of y with respect to x. \qquad
- The log-linear model
$\ln \left(y_{i}\right)=\beta_{1}+\beta_{2} x_{i}$
A one-unit increase in x leads to (approximately) a $100 \beta_{2}$ percent change in y.
- The linear-log model
$y=\beta_{1}+\beta_{2} \ln (x)$ or $\frac{\Delta y}{100(\Delta x / x)}=\frac{\beta_{2}}{100}$
A 1% increase in x leads to a $\beta_{2} / 100$ unit change in y.
Principles of Econometrics, 3rd Edition

4.3.3 The Food Expenditure Model

- The reciprocal model is \qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

4.3.4 Are the Regression Errors Normally Distrlbuted?

Figure 4.6 EViews output: residuals histogram and summary statistics for food expenditure example \qquad
\qquad

4.3.4 Are the Regression Errors Normally Distributed?

- The Jarque-Bera statistic is given by
\qquad
$J B=\frac{N}{6}\left(S^{2}+\frac{(K-3)^{2}}{4}\right)$ \qquad
where N is the sample size, S is skewness, and K is kurtosis.
- In the food expenditure example
$J B=\frac{40}{6}\left(-.097^{2}+\frac{(2.99-3)^{2}}{4}\right)=.063$ \qquad
\qquad

4.3.5 Another Emplitcoll Example

Figure 4.7 Scatter plot of wheat yield over time
Principles of Econometrics, 3rd Edition
Slide 4-28

\qquad
4.3.5 Another Emplifical Example

Figure 4.9 Bar chart of residuals from straight line
Principles of Econometrics, 3rd Edition
Slide 4-31

4.3.5 Another Empirical Example			
$Y I E L D_{t}=\beta_{1}+\beta_{2}$ TIME $_{t}^{3}+e_{t}$			
TIMECUBE $=$ TIME ${ }^{3} / 1000000$			
	$\begin{aligned} & \widehat{Y I E L D}_{t}= \\ & \begin{array}{c} (\mathrm{se}) \\ \left(.0374+9.68 \text { TIMECUBE }_{t}\right. \\ (.082) \end{array} \end{aligned}$	$R^{2}=0.751$	
Principles of Economerrics, 3rd Edition Slide 4-32			

4.3.5 Another Empirical Example

Figure 4.10 Fitted, actual and residual values from equation with cubic term
Principles of Econometrics, 3rd Edition
\qquad

4.4 Log-Linear Models

- 4.4.2 A Wage Equation
\qquad
\qquad $\ln (W A G E)=\ln \left(W A G E_{0}\right)+\ln (1+r) E D U C$
$=\beta_{1}+\beta_{2} E D U C$
$\overline{\ln (W A G E)}=.7884+.1038 \times E D U C$
(se) (.0849) (.0063)

4.4 Log-Linear Models

- 4.4.3 Prediction in the Log-Linear Model

$$
\begin{aligned}
& \hat{y}_{n}=\exp (\widehat{\ln (y)})=\exp \left(b_{1}+b_{2} x\right) \\
& \hat{y}_{c}=\widehat{E(y)}=\exp \left(b_{1}+b_{2} x+\hat{\sigma}^{2} / 2\right)=\hat{y}_{n} e^{e^{z / 2} / 2} \\
& \widehat{\ln (W A G E})=.7884+.1038 \times E D U C=.7884+.1038 \times 12=2.0335 \\
& \hat{y}_{c}=\widehat{E(y)}=\hat{y}_{n} e^{e^{z / 2}}=7.6408 \times 1.1276=8.6161
\end{aligned}
$$

4.4 Log-Linear Models

- 4.4.4 A Generalized R^{2} Measure
$R_{g}^{2}=[\operatorname{corr}(y, \hat{y})]^{2}=r_{y, g}^{2}$
$R_{g}^{2}=\left[\operatorname{corr}\left(y, \hat{y}_{c}\right)\right]^{2}=.4739^{2}=.2246$
R^{2} values tend to be small with microeconomic, cross-sectional data, because the variations in individual behavior are difficult to fully explain.

4.4 Log-Linear Models

- 4.4.5 Prediction Intervals in the Log-Linear Model
\qquad
\qquad
$\left[\exp \left(\widehat{\ln (y)}-t_{c} \operatorname{se}(f)\right), \exp \left(\widehat{\ln (y)}+t_{c} \operatorname{se}(f)\right)\right]$
$[\exp (2.0335-1.96 \times .4905), \exp (2.0335+1.96 \times .4905)]=[2.9184,20.0046]$
\qquad
\qquad
\qquad
\qquad
\qquad

Chapter 4 Appendices

- Appendix 4A Development of a Prediction Interval
- Appendix 4B The Sum of Squares Decomposition
- Appendix 4C The Log-Normal Distribution

Appendix 4A

Development of a Prediction Interval

$$
f=y_{0}-\hat{y}_{0}=\left(\beta_{1}+\beta_{2} x_{0}+e_{0}\right)-\left(b_{1}+b_{2} x_{0}\right)
$$

$$
\begin{aligned}
\operatorname{var}\left(\hat{y}_{0}\right) & =\operatorname{var}\left(b_{1}+b_{2} x_{0}\right)=\operatorname{var}\left(b_{1}\right)+x_{0}^{2} \operatorname{var}\left(b_{2}\right)+2 x_{0} \operatorname{cov}\left(b_{1}, b_{2}\right) \\
& =\frac{\sigma^{2} \sum x_{i}^{2}}{N \sum\left(x_{i}-\bar{x}\right)^{2}}+x_{0}^{2} \frac{\sigma^{2}}{\sum\left(x_{i}-\bar{x}\right)^{2}}+2 x_{0} \sigma^{2} \frac{-\bar{x}}{\sum\left(x_{i}-\bar{x}\right)^{2}}
\end{aligned}
$$

Appendix 4A

Development of a Prediction Interval

$$
\begin{aligned}
\operatorname{var}\left(\hat{y}_{0}\right) & =\left[\frac{\sigma^{2} \sum x_{i}^{2}}{N \sum\left(x_{i}-\bar{x}\right)^{2}}-\left\{\frac{\sigma^{2} N x^{2}}{N \sum\left(x_{i}-\bar{x}\right)^{2}}\right\}\right]+\left[\frac{\sigma^{2} x_{0}^{2}}{\sum\left(x_{i}-\bar{x}\right)^{2}}+\frac{\sigma^{2}\left(-2 x_{0} \bar{x}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}}+\left\{\frac{\sigma^{2} N x^{2}}{N \sum\left(x_{i}-\bar{x}\right)^{2}}\right\}\right] \\
& =\sigma^{2}\left[\frac{\sum x_{i}^{2}-N x^{2}}{N \sum\left(x_{i}-\bar{x}\right)^{2}}+\frac{x_{0}^{2}-2 x_{\bar{x}}+\bar{x}^{2}}{\sum\left(x_{i}-\bar{x}\right)^{2}}\right] \\
& =\sigma^{2}\left[\frac{\sum\left(x_{1}-\bar{x}\right)^{2}}{N \sum\left(x_{i}-\bar{x}\right)^{2}}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{\sum\left(x_{i}-\bar{x}\right)^{2}}\right] \\
& =\sigma^{2}\left[\frac{1}{N}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{\sum\left(x_{i}-\bar{x}\right)^{2}}\right]
\end{aligned}
$$

\qquad

Appendix 4A

Development of a Predlction Interval
$P\left[-t_{c} \leq \frac{y_{0}-\hat{y}_{0}}{\operatorname{se}(f)} \leq t_{c}\right]=1-\alpha$
$P\left[\hat{y}_{0}-t_{c} \operatorname{se}(f) \leq y_{0} \leq \hat{y}_{0}+t_{c} \operatorname{se}(f)\right]=1-\alpha$

Principles of Econometrics, 3rd Edition
Slide 4-44

Appendix 4B
 The Sum of Squares Decomposition

$\left(y_{i}-\bar{y}\right)^{2}=\left[\left(\hat{y}_{i}-\bar{y}\right)+\hat{e}_{i}\right]^{2}=\left(\hat{y}_{i}-\bar{y}\right)^{2}+\hat{e}_{i}^{2}+2\left(\hat{y}_{i}-\bar{y}\right) \hat{e}_{i}$

$\sum\left(\hat{y}_{i}-\bar{y}\right) \hat{e}_{i}=\sum \hat{y}_{i} \hat{e}_{i}-\bar{y} \sum \hat{e}_{i}=\sum\left(b_{1}+b_{2} x_{i}\right) \hat{e}_{i}-\bar{y} \sum \hat{e}_{i}$
$=b_{1} \sum \hat{e}_{i}+b_{2} \sum x_{i} \hat{e}_{i}-\bar{y} \sum \hat{e}_{i}$

Principles of Econometrics, 3rd Edition
Slide 4-45

$P\left[-t_{c} \leq \frac{y_{0}-\hat{y}_{0}}{\sec (f)} \leq t_{c}\right]=1-\alpha$

\qquad

Appendlx 4B
The Sum of Squares Decomposition

$$
\sum \hat{e}_{i}=\sum\left(y_{i}-b_{1}-b_{2} x_{i}\right)=\sum y_{i}-N b_{1}-b_{2} \sum x_{i}=0
$$

$$
\sum x_{i} \hat{e}_{i}=\sum x_{i}\left(y_{i}-b_{1}-b_{2} x_{i}\right)=\sum x_{i} y_{i}-b_{i} \sum x_{i}-b_{2} \sum x_{i}^{2}=0
$$

$$
\sum\left(\hat{y}_{i}-\bar{y}\right) \hat{e}_{i}=0
$$

If the model contains an intercept it is guaranteed that $S S T=S S R+S S E$ If, however, the model does not contain an intercept, then $\sum \hat{e}_{i} \neq 0$ and $S S T \neq S S R+S S E$.

Appendix 4C
 The Log-Normal Distrlbutlon

Suppose that the variable y has a normal distribution, with mean μ and variance σ^{2}
If we consider $w=e^{\prime}$ then $y=\ln (w) \sim N\left(\mu \sigma^{2}\right)$ is said to have a log-normal If we consider $w=e^{y}$ then $y=\ln (w) \sim N\left(\mu, \sigma^{2}\right)$ is said to have a \log-normal distribution.

$$
E(w)=e^{\mu+\sigma^{2} / 2}
$$

$$
\operatorname{var}(w)=e^{2 \mu+\sigma^{2}}\left(e^{\sigma^{2}}-1\right)
$$

Appendix 4C
 The Log-Normal Distribution

Given the log-linear model $\ln (y)=\beta_{1}+\beta_{2} x+e$
If we assume that $e \sim N\left(0, \sigma^{2}\right)$

$E\left(y_{i}\right)=E\left(e^{\beta_{1}+\beta_{2} x_{i}+e_{1}}\right)=E\left(e^{\beta_{1}+\beta_{2} x_{i} e_{i}^{e_{i}}}\right)=$
$e^{\beta_{1}+\beta_{2} x} E\left(e^{e_{i}}\right)=e^{\beta_{1}+\beta_{2} x} e^{\sigma^{2} / 2}=e^{\beta_{1}+\beta_{2} x_{1}+\sigma^{2} / 2}$

$$
\widehat{E\left(y_{i}\right)}=e^{b_{1}+b_{2} x_{i}+\dot{\sigma}^{2} / 2}
$$

