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Prediction, Goodness-of-Fit, and Modeling Issues

Prepared by Vera Tabakova, East Carolina University

4.1 Least Squares Prediction

4.2 Measuring Goodness-of-Fit

d li4.3 Modeling Issues 

4.4 Log-Linear Models 
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where  e0 is a random error.  We assume that                                   and
We also ass me that and

(4.1)0 1 2 0 0β βy x e= + +

( )0 1 2 0E y x= β +β

( ) 0E ( ) 2.  We also assume that                          and 
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( )0 0E e = ( ) 2
0var e = σ

( )0cov , 0 1,2, ,ie e i N= = …

(4.2)0 1 2 0ŷ b b x= +
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Figure 4.1 A point prediction
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(4.3)( ) ( )0 0 1 2 0 0 1 2 0ˆf y y x e b b x= − = β +β + − +

( ) ( ) ( ) ( )1 2 0 0 1 2 0E f x E e E b E b x= β +β + − ⎡ + ⎤⎣ ⎦
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The variance of the forecast error is smaller when  

i. the overall uncertainty in the model is smaller, as measured by the variance of 
the random errors ; 

ii. the sample size N is larger; 
iii. the variation in the explanatory variable is larger; andp y g ;
iv. the value of  is small. 
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(4.5)

(4.6)

( ) ( )se varf f=

( )0ˆ secy t f±

Figure 4.2 Point and interval  prediction
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[ ]0ˆ se( ) 287.6069 2.0244(90.6328) 104.1323,471.0854cy t f± = ± =
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(4.7)

(4 8)

1 2  i i iy x e= β +β +

( )y E y e= +
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(4.8)

(4.9)

(4.10)

( )i i iy E y e= +

ˆ ˆi i iy y e= +

ˆ ˆ( )i i iy y y y e− = − +

Figure 4.3 Explained and unexplained components of yi
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(4.11)2 2 2ˆ ˆ( ) ( )i i iy y y y e− = − +∑ ∑ ∑
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= total sum of squares = SST: a measure of total variation in y about the 
sample mean. 

= sum of squares due to the regression = SSR: that part of total variation 
in y, about the sample mean, that is explained by, or due to, the regression. Also 
known as the “explained sum of squares ”

2( )iy y−∑

2ˆ( )  iy y−∑

known as the “explained sum of squares.”

= sum of squares due to error = SSE: that part of total variation in y about its 
mean that is not explained by the regression. Also known as the unexplained sum of 
squares, the residual sum of squares, or the sum of squared errors.

SST = SSR + SSE      
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2ˆ  ie∑

(4.12)
2 1SSR SSER

SST SST
= = −

The closer R2 is to one, the closer the sample values yi are to the fitted regression 

equation                    . If  R2= 1, then all the sample data fall exactly on the fitted 

least squares line, so SSE = 0, and the model fits the data “perfectly.” If the sample 

data for y and x are uncorrelated and show no linear association, then the least 

squares fitted line is “horizontal,” so that SSR = 0 and R2 = 0.
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1 2î iy b b x= +

(4.13)
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2 2
xyr R=

2 2
ˆyyR r=

R2 measures the linear association, or goodness-of-fit, between the sample data 

and their predicted values. Consequently R2 is sometimes called a measure of 

“goodness-of-fit.”
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Figure 4.4 Plot of predicted y,    against y
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ŷ



12/10/2007

7

FOOD_EXP = weekly food expenditure by a household of size 3, in dollars

INCOME = weekly household income, in $100 units

283.42 10.21               .385FOOD_EXP = INCOME R+ =

* indicates significant at the 10% level
** indicates significant at the 5% level
*** indicates significant at the 1% level
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* ***        (se)         (43.41)  (2.09)

4.3.1 The Effects of Scaling the Data
Changing the scale of x:

* *
1 2 1 2 1 2 = ( )( / )  =  y x e c x c e x e= β +β + β + β + β +β +

* *h β β d

Changing the scale of y:
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2 2where β β  and c x x c= =

* * * *
1 2 1 2/ ( / ) ( / ) ( / ) or  y c c c x e c y x e= β + β + = β +β +

Variable transformations:
Power: if x is a variable then xp means raising the variable to the power p; examples 

are quadratic (x2) and cubic (x3) transformations.

The natural logarithm: if x is a variable then its natural logarithm is ln(x).g g ( )

The reciprocal: if x is a variable then its reciprocal is 1/x. 
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Figure 4.5 A nonlinear relationship between food expenditure and income   
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The log-log model

The parameter β is the elasticity of y with respect to x.
1 2ln( ) ln( )y x= β +β

The log-linear model

A one-unit increase in x leads to (approximately) a 100 β2 percent change in y. 

The linear-log model

A 1% increase in x leads to a  β2/100 unit change in y. 
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1 2ln( )i iy x= β +β

( ) ( )
2

1 2 ln  or 
100 100

yy x
x x

Δ β
= β +β =

Δ

The reciprocal model is

1 2
1_FOOD EXP e

INCOME
= β +β +

The linear-log model is
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1 2_ ln( )FOOD EXP INCOME e= β +β +
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Remark: Given this array of models, that involve different 
transformations of the dependent and independent variables, 
and some of which have similar shapes, what are some 
guidelines for choosing a functional form? 
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g g

1. Choose a shape that is consistent with what economic 
theory tells us about the relationship.

2. Choose a shape that is sufficiently flexible to “fit” the 
data

3. Choose a shape so that assumptions SR1-SR6 are 
satisfied, ensuring that the least squares estimators have 
the desirable properties described in Chapters 2 and 3.

Figure 4.6 EViews output: residuals histogram and summary statistics for food expenditure example
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The Jarque-Bera statistic is given by

( )2
2 3

6 4
KNJB S

⎛ ⎞−
= +⎜ ⎟⎜ ⎟

⎝ ⎠

where N is the sample size, S is skewness, and K is kurtosis.

In the food expenditure example
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( )2
2 2.99 340 .097 .063

6 4
JB

⎛ ⎞−
= − + =⎜ ⎟⎜ ⎟

⎝ ⎠



12/10/2007

10

Figure 4.7 Scatter plot of wheat yield over time
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1 2t t tYIELD TIME e= β +β +
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2.638 .0210 .649
 (se)        (.064) (.0022)

t tYIELD TIME R= + =

Figure 4.8 Predicted, actual and residual values from straight line
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Figure 4.9 Bar chart of residuals from straight line
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3
1 2t t tYIELD TIME e= β +β +

3 1000000TIMECUBE TIME
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20.874 9.68 0.751
 (se)        (.036) (.082)

t tYIELD TIMECUBE R= + =

3 1000000TIMECUBE TIME=

Figure 4.10 Fitted, actual and residual values from equation with cubic term
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4.4.1 The Growth Model

( ) ( ) ( )0ln ln ln 1tYIELD YIELD g t

t

= + +

β +β
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1 2t= β +β

( )ln .3434  .0178
     (se)            (.0584)     (.0021)       

tYIELD t= − +

4.4.2 A Wage Equation

( ) ( ) ( )0

1 2

ln ln ln 1WAGE WAGE r EDUC

EDUC

= + +

= β +β
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1 2β β

( )ln .7884  .1038
   (se)           (.0849)     (.0063)

WAGE EDUC= + ×

4.4.3 Prediction in the Log-Linear Model

( )( ) ( )1 2ˆ exp ln expny y b b x= = +

( ) ( ) 2ˆ2 2ˆ ˆ ˆ2E b b σ
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( ) ( )2 2
1 2exp 2c ny E y b b x y eσ= = + + σ =

( )ln .7884  .1038 .7884  .1038 12 2.0335WAGE EDUC= + × = + × =

( ) 2ˆ 2ˆ ˆ 7.6408 1.1276 8.6161c ny E y y eσ= = = × =
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4.4.4 A Generalized R2 Measure

( ) 22 2
ˆ,ˆcorr ,g y yR y y r= ⎡ ⎤ =⎣ ⎦

R2 values tend to be small with microeconomic, cross-sectional data, because the 

variations in individual behavior are difficult to fully explain. 
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( ) 22 2ˆcorr , .4739 .2246g cR y y= ⎡ ⎤ = =⎣ ⎦

4.4.5 Prediction Intervals in the Log-Linear Model

( ) ( )( ) ( ) ( )( )exp ln se ,exp ln sec cy t f y t f⎡ ⎤− +⎢ ⎥⎣ ⎦
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( ) ( ) [ ]exp 2.0335 1.96 .4905 ,exp 2.0335 1.96 .4905 2.9184,20.0046⎡ − × + × ⎤ =⎣ ⎦

coefficient of 
determination
correlation
data scale
forecast error

linear model
linear relationship
linear-log model
log-linear model
log-log model
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forecast standard 
error
functional form
goodness-of-fit
growth model
Jarque-Bera test
kurtosis
least squares 
predictor

log-normal 
distribution
prediction
prediction interval
R2

residual
skewness
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( ) ( )0 0 1 2 0 0 1 2 0ˆf y y x e b b x= − = β +β + − +
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~ (0,1)
var( )

f N
f

( )
2

2 01 ( )ˆvar 1 x xf
⎡ ⎤−

= σ + +⎢ ⎥
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(4A.1)

(4A.2)

( ) 2var 1
( )i

f
N x x

= σ + +⎢ ⎥−⎣ ⎦∑

( )
0 0

( 2)
ˆ

~
se( )var

N
f y y t

ff
−

−
=

( ) 1c cP t t t− ≤ ≤ = −α

0 0ˆ
[ ] 1

se( )c c
y yP t t

f
−

− ≤ ≤ = −α

[ ]ˆ ˆse( ) se( ) 1P y t f y y t f− ≤ ≤ + = −α
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[ ]0 0 0se( ) se( ) 1c cP y t f y y t f− ≤ ≤ + = −α

( ) [ ]22 2 2ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) 2( )i i i i i i iy y y y e y y e y y e− = − + = − + + −

( )2 2 2ˆ ˆ ˆ ˆ( ) 2 ( )+ +∑ ∑ ∑ ∑
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( ) 2 2( ) 2 ( )i i i i iy y y y e y y e− = − + + −∑ ∑ ∑ ∑

( ) ( )1 2

1 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ

i i i i i i i i

i i i i

y y e y e y e b b x e y e

b e b x e y e
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∑ ∑ ∑
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( )1 2 1 2ˆ 0i i i i ie y b b x y Nb b x= − − = − − =∑ ∑ ∑ ∑

( ) 2ˆ 0x e x y b b x x y b x b x= − − = − − =∑ ∑ ∑ ∑ ∑
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If the model contains an intercept it is guaranteed that SST = SSR + SSE. 
If, however, the model does not contain an intercept, then                and 
SST ≠ SSR + SSE.

( )1 2 1 2 0i i i i i i i i ix e x y b b x x y b x b x= − − = − − =∑ ∑ ∑ ∑ ∑

( )ˆ ˆ 0i iy y e− =∑

ˆ 0ie ≠∑

Suppose that the variable y has a normal distribution, with mean μ and variance σ2. 
If we consider               then                                     is said to have a log-normal
distribution.

yw e= ( ) ( )2ln ~ ,y w N= μ σ

( ) 2 2E μ+σ
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( ) 2E w eμ+σ=

( ) ( )2 22var 1w e eμ+σ σ= −

Given the log-linear model

If we assume that 

( ) 1 2ln y x e= β +β +

( )2~ 0,e N σ

( ) ( ) ( )1 2 1 2i i i ix e x eE y E e E e eβ +β + β +β= = =
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( ) 2
1 2 ˆ 2ib b x
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The growth and wage equations:

and( )2 ln 1 rβ = + 2 1r eβ= −

( ) ( )( )22~ varb N b x xβ = σ ∑
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( ) ( )( )2 2 2~ ,var ib N b x xβ = σ −∑

( )2 22 var /2bbE e eβ +⎡ ⎤ =⎣ ⎦
( )2 2var /2ˆ 1b br e += −

( ) ( )22
2 ˆvar ib x x= σ −∑


