
Review of Matrix Algebra
Steven Vukazich

San Jose State University



Notation
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Vector

Matrix

It is sometimes useful to show the 
dimension (number of rows by 
number of columns) of a matrix or 
vector below the matrix or vector
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Transpose
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Symmetric matrix

Diagonal matrix

4 1 0 7
1 6 3 8
0 3 9 2
7 8 2 11
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2 0 0 0
0 3 0 0
0 0 6 0
0 0 0 8
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Vector Scalar (Dot) Product
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3	x	1
2, 1, 4

= 2 5 + 1 2 + 4 6

= 10 + 2 + 24 = 34
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Multiplication of a Matrix and a Vector
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= 2 5 + 1 2 = 12
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3 5 + 6 2 = 27
4 5 + 8 2 = 36
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Identity matrix

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
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The identity matrix is a 
square diagonal matrix 
with ones on the diagonal.  
It is the matrix analog of 
the number 1

The identity matrix has the following properties:
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Determinant of a 2 x 2 matrix

! = !## !#$
!$# !$$

det ! = !##!$$ − !#$!$#

The determinant of a 2 x 2 matrix is defined as:

The determinant of all square matrices is defined and can 
be derived from the determinant of a 2 x 2 matrix.



Singular Matrix

det $ = 0

A square matrix is singular if:

det $ ≠ 0

A square matrix is nonsingular if:



Inverse of a Matrix

! "# ! = %

All nonsingular square matrices have an inverse 
that satisfies:

! = !## !#&
!&# !&&

det ! = !##!&& − !#&!&#

The inverse of a 2 x 2 matrix is:

The inverse of all larger square nonsingular matrices is defined and 
can be found using techniques beyond the scope of this review

! "# = 1
det !

!&& −!#&
−!&# !##



System of Equations in Matrix Form
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A system of n equations n unknowns can be represented in matrix 
form as: 

Where:
" is the vector of unknowns;
! is the matrix of known coefficients;
$ is the vector of known data

For example, the system of 3 equations and 3 unknowns can be 
represented in matrix form as: 



A system of n equations n unknowns has a unique solution if the 
coefficient matrix is nonsingular (det % ≠ 0)

In theory, the solution can be found by finding the inverse of % and 
pre-multiplying the both sides of the system of equations by % )*

Solution of a System of Linear Equations

% )* % + = % )* -

Note that in practice, there are more efficient methods of solving a 
system of linear equations.
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