Review of Matrix Algebra Steven Vukazich San Jose State University

Notation

Vector

$$
\{d\}=\left\{\begin{array}{l}
d_{1} \\
d_{2} \\
d_{3} \\
d_{4}
\end{array}\right\}
$$

It is sometimes useful to show the dimension (number of rows by number of columns) of a matrix or vector below the matrix or vector

Matrix

$$
[A]=\left[\begin{array}{lll}
A_{11} & A_{21} & A_{31} \\
A_{12} & A_{22} & A_{32} \\
A_{13} & A_{23} & A_{33} \\
A_{14} & A_{24} & A_{34}
\end{array}\right]
$$

[A] $\{d\}$

$$
4 \times 3 \quad 4 \times 1
$$

number of columns
number of rows

Transpose

Vector

Matrix

$$
[A]=\left[\begin{array}{cc}
2 & 1 \\
3 \times 2 & 6 \\
4 & 8
\end{array}\right] \quad \begin{aligned}
& {[A]^{T}=\left[\begin{array}{ccc}
2 & 3 & 4 \\
2 \times 3
\end{array}\right]}
\end{aligned}
$$

Symmetric matrix

$$
[A]=\left[\begin{array}{cccc}
4 & 1 & 0 & 7 \\
1 & 6 & 3 & 8 \\
0 & 3 & 9 & 2 \\
7 & 8 & 2 & 11
\end{array}\right]
$$

Diagonal matrix

$$
[D]=\left[\begin{array}{llll}
2 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & 6 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Vector Scalar (Dot) Product

$$
\begin{array}{lc}
\begin{array}{l}
\{d\} \\
3 \times 1
\end{array}=\left\{\begin{array}{l}
2 \\
1 \\
4
\end{array}\right\}
\end{array} \quad d \cdot \boldsymbol{b}=\{d\}^{T}\{b\}=\{2,1,4\}\left\{\begin{array}{l}
5 \\
2 \\
6
\end{array}\right\}
$$

Multiplication of a Matrix and a Vector

$$
[A]=\left[\begin{array}{ll}
\hline 2 & 1 \\
3 \times 2 & 6 \\
4 & 8
\end{array}\right] \quad \begin{aligned}
& \{b\}=\left\{\begin{array}{l}
5 \\
2
\end{array}\right\}
\end{aligned}
$$

$[A]\{b\}=\{c\}$ $3 \times 22 \times 1 \quad 3 \times 1$

must be the same

$$
\begin{array}{|ll|}
\hline \left.\begin{array}{ll}
2 & 1 \\
3 & 6 \\
4 & 8
\end{array} \right\rvert\,
\end{array} \begin{array}{r}
\left\{\begin{array}{l}
5 \\
2
\end{array}\right\}=\begin{array}{r}
(2)(5)+(1)(2)=12 \\
(3)(5)+(6)(2)=27 \\
(4)(5)+(8)(2)=36
\end{array}
\end{array} \begin{aligned}
& \{c\}=\left\{\begin{array}{l}
12 \\
27 \\
361
\end{array}\right\}
\end{aligned}
$$

Identity matrix

The identity matrix is a square diagonal matrix with ones on the diagonal. It is the matrix analog of the number 1

The identity matrix has the following properties:

$$
\begin{aligned}
& {[I]\{b\}=\{b\} \quad[I]^{T}=[I]} \\
& \underset{n \times n}{[I][A \times n}=\underset{n \times n}{[A]} \quad \underset{n \times n n_{n \times n}}{[A][I]}=\underset{n \times n}{[A]}
\end{aligned}
$$

Determinant of a 2×2 matrix

$$
[A]=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]
$$

The determinant of a 2×2 matrix is defined as:

$$
\operatorname{det}[A]=A_{11} A_{22}-A_{12} A_{21}
$$

The determinant of all square matrices is defined and can be derived from the determinant of a 2×2 matrix.

Singular Matrix

A square matrix is singular if:

$$
\operatorname{det}[A]=0
$$

A square matrix is nonsingular if:

$$
\operatorname{det}[A] \neq 0
$$

Inverse of a Matrix

All nonsingular square matrices have an inverse that satisfies:

$$
[A]^{-1}[A]=[I]
$$

The inverse of a 2×2 matrix is:

$$
[A]^{-1}=\frac{1}{\operatorname{det}[A]}\left[\begin{array}{cc}
A_{22} & -A_{12} \\
-A_{21} & A_{11}
\end{array}\right]
$$

$$
\begin{aligned}
& {[A]=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]} \\
& \operatorname{det}[A]=A_{11} A_{22}-A_{12} A_{21}
\end{aligned}
$$

The inverse of all larger square nonsingular matrices is defined and can be found using techniques beyond the scope of this review

System of Equations in Matrix Form

A system of n equations n unknowns can be represented in matrix form as:

$$
[A]\{x\}=\{b\}
$$

Where:
$\{x\}$ is the vector of unknowns;
$[A]$ is the matrix of known coefficients;
$\{b\}$ is the vector of known data

For example, the system of 3 equations and 3 unknowns can be represented in matrix form as:

$$
\begin{array}{r}
5 x_{1}+6 x_{2}+x_{3}=2 \\
4 x_{1}+9 x_{2}+2 x_{3}=5 \\
x_{2}+6 x_{3}=7
\end{array} \quad\left[\begin{array}{lll}
5 & 6 & 1 \\
4 & 9 & 2 \\
0 & 1 & 6
\end{array}\right]\left\{\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right\}=\left\{\begin{array}{l}
2 \\
5 \\
7
\end{array}\right\}
$$

Solution of a System of Linear Equations

A system of n equations n unknowns has a unique solution if the coefficient matrix is nonsingular $(\operatorname{det}[A] \neq 0)$

In theory, the solution can be found by finding the inverse of $[A]$ and pre-multiplying the both sides of the system of equations by $[A]^{-1}$

$$
[A]^{-1}[A]\{x\}=[A]^{-1}\{b\}
$$

$$
\{x\}=[A]^{-1}\{b\}
$$

Note that in practice, there are more efficient methods of solving a system of linear equations.

