Moment of Inertia of a Composite Area Steven Vukazich San Jose State University

Recall the Parallel Axis Theorem

Centroidal Moment of Inertia

$$\bar{I}_{x'} = \iint y'^2 \, dA$$

Parallel Axis Theorem

If we know the moment of inertia of a body about an axis passing through its centroid, we can calculate the body's moment of inertia about any parallel axis

If We Can Divide an Area into Simple Shapes With Known Centroid

Moment of Inertia of the entire area about the *x* axis

$$I_x = \sum I_{xi} = \sum \bar{I}_{xi'} + \sum d_{yi}^2 A_i$$

Tabulated Centroidal Moments of Inertia Can be Found in the Textbook

Tabulated Centroidal Moments of Inertia Can be Found in the Textbook

			Area	Depth	117-1-1	Axis X–X			Axis Y–Y		
		Designation	in ²	in.	in.	\overline{I}_{x} , in ⁴	$\overline{k}_{\mathbf{x}}$, in.	$\overline{y},$ in.	$\overline{I}_{y}, \mathrm{in}^4$	$\overline{k}_{y},$ in.	\overline{x} , in.
W Shapes (Wide-Flange Shapes) X —	Y X Y	W18×76† W16×57 W14×38 W8×31	22.3 16.8 11.2 9.12	18.2 16.4 14.1 8.00	11.0 7.12 6.77 8.00	1330 758 385 110	7.73 6.72 5.87 3.47		152 43.1 26.7 37.1	2.61 1.60 1.55 2.02	
S Shapes (American Standard Shapes) X	Y X Y	$\begin{array}{l} $$18 \times 54.7 \dagger \\ $$12 \times 31.8 \\ $$10 \times 25.4 \\ $$6 \times 12.5 \end{array}$	16.0 9.31 7.45 3.66	18.0 12.0 10.0 6.00	6.00 5.00 4.66 3.33	801 217 123 22.0	7.07 4.83 4.07 2.45		20.7 9.33 6.73 1.80	1.14 1.00 0.950 0.702	
C Shapes (American Standard Channels) ∡ →	Y X \overline{x} Y	$\begin{array}{c} C12 \times 20.7 \dagger \\ C10 \times 15.3 \\ C8 \times 11.5 \\ C6 \times 8.2 \end{array}$	6.08 4.48 3.37 2.39	12.0 10.0 8.00 6.00	2.94 2.60 2.26 1.92	129 67.3 32.5 13.1	4.61 3.87 3.11 2.34		3.86 2.27 1.31 0.687	0.797 0.711 0.623 0.536	0.698 0.634 0.572 0.512
$\begin{array}{c} Y \\ \hline X \\ \hline X \\ \hline Y \\ \hline Y \\ \end{array}$	<u>1</u> 9 x	$\begin{array}{c} L6 \times 6 \times 11 \\ L4 \times 4 \times \frac{12}{2} \\ L3 \times 3 \times \frac{1}{4} \\ L6 \times 4 \times \frac{12}{2} \\ L5 \times 3 \times \frac{12}{2} \\ L3 \times 2 \times \frac{1}{4} \end{array}$	11.0 3.75 1.44 4.75 3.75 1.19			35.4 5.52 1.23 17.3 9.43 1.09	1.79 1.21 0.926 1.91 1.58 0.953	1.86 1.18 0.836 1.98 1.74 0.980	35.4 5.52 1.23 6.22 2.55 0.390	1.79 1.21 0.926 1.14 0.824 0.569	1.86 1.18 0.836 0.981 0.746 0.487

Example Problem

Find the Area, Location of Centroid, and the Centroidal Moment of Inertia of Each Shape

Find the Area, Location of Centroid, and the Centroidal Moment of Inertia of Each Shape

Find Area and Location of Centroid of Each Shape Relative to Reference Coordinate Axes

Find Area and Location of Centroid of Each Shape Relative to Reference Coordinate Axes

$$I_x = \bar{I}_{x\prime} + d_y^2 A$$

$$\bar{I}_{x\prime} = I_x - d_y^2 A$$

$$\bar{I}_{x'} = \left(\frac{\pi}{8} - \frac{8}{9\pi}\right)r^4$$

$$\bar{I}_{\chi\prime} = \frac{1}{8}\pi r^4 - \left(\frac{4r}{3\pi}\right)^2 \left(\frac{\pi r^2}{2}\right)$$

Find Area and Location of Centroid of Each Shape Relative to Reference Coordinate Axes

$$\bar{f}_{y3'} = -\left(\frac{\pi}{8} - \frac{8}{9\pi}\right)r^4 = -\left(\frac{\pi}{8} - \frac{8}{9\pi}\right)(2^4) = -1.75610 \text{ in}^4$$

Find the Moment of Inertia about the x axis

$$\bar{I}_{x1\prime} = 5.25 \text{ in}^4 \qquad \bar{I}_{x2\prime} = 21.333 \text{ in}^4 \qquad \bar{I}_{x3\prime} = -6.28318 \text{ in}^4$$

$$d_{y1} = -2.0 \text{ in} \qquad d_{y2} = -5.0 \text{ in} \qquad d_{y3} = -3 \text{ in}$$

$$A_1 = 10.5 \text{ in}^2 \qquad A_2 = 16 \text{ in}^2 \qquad A_3 = -6.2832 \text{ in}^2$$

$$I_x = \sum \bar{I}_{xi\prime} + \sum d_{yi}^2 A_i$$

$$\frac{\text{Shape}}{1} \qquad \bar{I}_{xi\prime} \qquad d_{yi} \qquad A_i \qquad d_{yi}^2 A_i$$

$$\frac{1}{1} \qquad 5.25 \qquad -2.0 \qquad 10.5 \qquad 42.0$$

$$2 \qquad 21.333 \qquad -5.0 \qquad 16.0 \qquad 400.0$$

$$3 \qquad -6.28318 \qquad -3.0 \qquad -6.28318 \qquad -56.5486$$

$$\sum \qquad 20.300 \qquad \qquad 385.4514$$

$$I_x = 20.30 + 385.4514 = 405.75 \text{ in}^4$$

Find the Moment of Inertia about the y axis
$$\bar{I}_{y1'} = 28.5833 \text{ in}^4$$
 $\bar{I}_{y2'} = 21.333 \text{ in}^4$ $\bar{I}_{y3'} = -1.75610 \text{ in}^4$ $d_{x1} = 4.67 \text{ in}$ $d_{x2} = 5.0 \text{ in}$ $d_{x3} = 5.1512 \text{ in}$ $A_1 = 10.5 \text{ in}^2$ $A_2 = 16 \text{ in}^2$ $A_3 = -6.2832 \text{ in}^2$ $I_y = \sum \bar{I}_{yi'} + \sum d_{xi}^2 A_i$ $I_y = \sum \bar{I}_{yi'} + \sum d_{xi}^2 A_i$ $\frac{\text{Shape}}{1}$ $\bar{I}_{yi'}$ d_{xi} A_i $d_{x1} = 10.5 \text{ in}^2$ $A_{x1} = 10.5 \text{ in}^2$ $A_{x2} = 16 \text{ in}^2$ $I_y = \sum \bar{I}_{yi'} + \sum d_{xi}^2 A_i$ $A_3 = -6.2832 \text{ in}^2$ $I_y = \sum \bar{I}_{yi'} + \sum d_{x1}^2 A_i$ $A_1 = 10.5 \text{ in}^2$ $I_y = 48.1600$ $I_{152.3041}$ $I_y = 48.1606 + 1152.3041 = 1200.46 \text{ in}^4$