Moment of Inertia of a Composite Area Steven Vukazich

San Jose State University

Recall the Parallel Axis Theorem

$$
I_{x}=\bar{I}_{x^{\prime}}+d^{2} A
$$

General Form

$$
I=\bar{I}+d^{2} A
$$

Centroidal Moment of Inertia

$$
\bar{I}_{x^{\prime}}=\iint y^{\prime 2} d A
$$

Parallel Axis Theorem

If we know the moment of inertia of a body about an axis passing through its centroid, we can calculate the body's moment of inertia about any parallel axis

If We Can Divide an Area into Simple Shapes With Known Centroid

Moment of Inertia of the entire area about the x axis

$$
I_{x}=\sum I_{x i}=\sum \bar{I}_{x i}+\sum d_{y i}^{2} A_{i}
$$

Tabulated Centroidal Moments of Inertia Can be Found in the Textbook

Rexamb		
Timasdo		
Cinte		
Smomicise		
Qeneresiste		
Ellupe		

Tabulated Centroidal Moments of Inertia Can be Found in the Textbook

	Designation	$\begin{gathered} \text { Area } \\ \text { in }^{2} \end{gathered}$	$\begin{aligned} & \text { Depth } \\ & \text { in. } \end{aligned}$	$\begin{aligned} & \text { Width } \\ & \text { in. } \end{aligned}$	Axis X-X			Axis Y Y Y		
					$\bar{I}_{\text {x }}$ in ${ }^{4}$	\bar{k}_{x}, in.	\bar{y}, in.	\bar{I}_{y}, in ${ }^{4}$	$\bar{k}_{\text {g }}$, in	\bar{x}, in.
W Shapes (Wide-Flange Shapes)	w 18×76 W16 $\times 57$ W 8×31	$\begin{gathered} 22.3 \\ 16.8 \\ 11.2 \\ 9.12 \end{gathered}$	$\begin{aligned} & 18.2 \\ & 16.4 \\ & 14.1 \\ & 8.00 \end{aligned}$	$\begin{gathered} 11.0 \\ 7.12 \\ 6.77 \\ 8.00 \end{gathered}$	$\begin{aligned} & 1330 \\ & 758 \\ & 355 \\ & 110 \end{aligned}$	$\begin{aligned} & 7.73 \\ & 6.72 \\ & 5.87 \\ & 3.47 \end{aligned}$		$\begin{aligned} & 152 \\ & 43.1 \\ & 26.7 \\ & 37.1 \end{aligned}$	$\begin{aligned} & 2.61 \\ & 1.60 \\ & 1.55 \\ & 2.02 \end{aligned}$	
S Shapes (American Standard Shapes)	$\begin{aligned} & \mathrm{s} 18 \times 54.7 \dagger \\ & \mathrm{~S} 12 \times 31.8 \\ & \mathrm{~s} 10 \times 25.4 \\ & \mathrm{~S} 6 \times 12.5 \end{aligned}$	$\begin{gathered} 16.0 \\ 9.31 \\ 7.45 \\ 3.66 \end{gathered}$	$\begin{gathered} 18.0 \\ 12.0 \\ 10.0 \\ 6.00 \end{gathered}$	$\begin{aligned} & 6.00 \\ & 5.00 \\ & 4.66 \\ & 3.33 \end{aligned}$	$\begin{aligned} & 801 \\ & 217 \\ & 123 \\ & 22.0 \end{aligned}$	$\begin{aligned} & 7.07 \\ & 4.83 \\ & 4.07 \\ & 2.45 \end{aligned}$		$\begin{gathered} 20.7 \\ 9.33 \\ 6.73 \\ 1.80 \end{gathered}$	$\begin{aligned} & 1.14 \\ & 1.14 \\ & 0.950 \\ & 0.702 \end{aligned}$	
	$\begin{aligned} & \mathrm{C} 12 \times 20.7 \dagger \\ & \mathrm{Cl0} \mathrm{\times 15.3} \\ & \mathrm{CS} \times 11.5 \\ & \mathrm{C} 6 \times 8.2 \end{aligned}$	$\begin{aligned} & 6.98 \\ & 4.48 \\ & 3.37 \\ & 2.39 \end{aligned}$	$\begin{gathered} 12.0 \\ 10.0 \\ 8.00 \\ 6.00 \end{gathered}$	$\begin{aligned} & 2.94 \\ & 2.20 \\ & 2.26 \\ & 1.92 \end{aligned}$	$\begin{gathered} 129 \\ 67.3 \\ 32.5 \\ 13.1 \end{gathered}$	$\begin{aligned} & 4.61 \\ & 3.87 \\ & 3.11 \\ & 2.34 \end{aligned}$		$\begin{aligned} & 3.86 \\ & 2.27 \\ & 1.31 \\ & 0.687 \end{aligned}$	$\begin{aligned} & 0.777 \\ & 0.711 \\ & 0.623 \\ & 0.536 \end{aligned}$	$\begin{aligned} & 0.698 \\ & 0.634 \\ & 0.572 \\ & 0.512 \end{aligned}$
	$\mathrm{L} 6 \times 6 \times 1 \ddagger$ $\mathrm{L} 4 \times 4 \times \frac{1}{2}$ $\mathrm{L} 3 \times 3 \times \frac{1}{4}$ $\mathrm{L} 6 \times 4 \times \frac{1}{2}$ L5 $\times 3 \times \frac{1}{2}$ $\mathrm{L} 3 \times 2 \times \frac{1}{4}$	$\begin{gathered} 11.0 \\ 3.75 \\ 1.44 \\ 4.75 \\ 3.75 \\ 1.19 \end{gathered}$			$\begin{gathered} 35.4 \\ 5.52 \\ 1.23 \\ 17.3 \\ 9.43 \\ 1.09 \end{gathered}$	$\begin{aligned} & 1.79 \\ & 1.21 \\ & 0.926 \\ & 1.91 \\ & 1.58 \\ & 0.953 \end{aligned}$	$\begin{aligned} & 1.86 \\ & 1.18 \\ & 0.836 \\ & 1.98 \\ & 1.74 \\ & 0.980 \end{aligned}$	35.4 5.52 1.23 6.22 2.55 0.390	$\begin{aligned} & 1.79 \\ & 1.21 \\ & 0.926 \\ & 1.14 \\ & 0.824 \\ & 0.569 \end{aligned}$	$\begin{aligned} & 1.86 \\ & 1.18 \\ & 0.836 \\ & 0.981 \\ & 0.746 \\ & 0.457 \end{aligned}$

Example Problem

Divide Area into Simple Composite Shapes

Find the Area, Location of Centroid, and the Centroidal Moment of Inertia of Each Shape

Find the Area, Location of Centroid, and the Centroidal Moment of Inertia of Each Shape

Find Area and Location of Centroid of Each Shape Relative to Reference Coordinate Axes

Find Area and Location of Centroid of Each Shape Relative to Reference Coordinate Axes

Find Area and Location of Centroid of Each Shape Relative to Reference Coordinate Axes

Use Parallel Axis Theorem to Complete Table for Semicircle

$$
I_{x}=\bar{I}_{x^{\prime}}+d_{y}^{2} A
$$

$$
\bar{I}_{x^{\prime}}=I_{x}-d_{y}^{2} A
$$

$$
\bar{I}_{x \prime}=\left(\frac{\pi}{8}-\frac{8}{9 \pi}\right) r^{4}
$$

$\bar{I}_{x \prime}=\frac{1}{8} \pi r^{4}-\left(\frac{4 r}{3 \pi}\right)^{2}\left(\frac{\pi r^{2}}{2}\right)$

Find Area and Location of Centroid of Each Shape Relative to Reference Coordinate Axes

$$
\bar{I}_{y_{3},}=-\left(\frac{\pi}{8}-\frac{8}{9 \pi}\right) r^{4}=-\left(\frac{\pi}{8}-\frac{8}{9 \pi}\right)\left(2^{4}\right)=-1.75610 \text { in }^{4}
$$

Find the Moment of Inertia about the x axis

$$
\begin{aligned}
& \bar{I}_{x_{1},}=5.25 \text { in }^{4} \\
& d_{y 1}=-2.0 \text { in } \\
& A_{1}=10.5 \mathrm{in}^{2} \\
& \bar{I}_{x 2 \prime}=21.333 \mathrm{in}^{4} \\
& \bar{I}_{x 3^{\prime}}=-6.28318 \text { in }^{4} \\
& d_{y 2}=-5.0 \text { in } \\
& d_{y 3}=-3 \text { in } \\
& A_{2}=16 \text { in }^{2} \\
& A_{3}=-6.2832 \text { in }^{2} \\
& I_{x}=\sum \bar{I}_{x i}+\sum d_{y i}^{2} A_{i} \\
& I_{x}=20.30+385.4514=405.75 \text { in }^{4}
\end{aligned}
$$

Find the Moment of Inertia about the \boldsymbol{y} axis

$$
\begin{aligned}
& \begin{array}{|c|l|l|}
\bar{I}_{y 1^{\prime}}=28.5833 \mathrm{in}^{4} & \bar{I}_{y 2^{\prime}}=21.333 \mathrm{in}^{4} \quad \bar{I}_{y 3 \prime}=-1.75610 \mathrm{in}^{4} \\
\hline
\end{array} \\
& d_{x 1}=4.67 \mathrm{in} \\
& d_{x 2}=5.0 \text { in } \\
& d_{x 3}=5.1512 \text { in } \\
& A_{1}=10.5 \mathrm{in}^{2} \\
& A_{2}=16 \text { in }^{2} \\
& A_{3}=-6.2832 \text { in }^{2} \\
& I_{y}=\sum \bar{I}_{y i}+\sum d_{x i}^{2} A_{i}
\end{aligned}
$$

Shape	$\bar{I}_{y i \prime}$	$d_{x i}$	A_{i}	$d_{x i}^{2} A_{i}$
1	28.5833	4.67	10.5	919.0274
2	21.3333	5.0	16.0	400.0
3	-1.75610	5.1512	-6.28318	-166.7233
\sum	48.1606			1152.3041

$$
I_{y}=48.1606+1152.3041=1200.46 \mathrm{in}^{4}
$$

