Parallel Axis Theorem Steven Vukazich
 San Jose State University

Recall the Definition of the Moment of Inertia of an Area About an Axis

Consider an axis x 'that is parallel to the x axis and passes through the centroid of the area. The distance between the two parallel axes is d

$$
y=y^{\prime}+d
$$

$$
I_{x}=\iint y^{2} d A=\iint\left(y^{\prime}+d\right)^{2} d A
$$

Expand and Examine Terms

Parallel Axis Theorem

$$
I_{x}=\bar{I}_{x^{\prime}}+d^{2} A
$$

General Form

$$
I=\bar{I}+d^{2} A
$$

Centroidal Moment of Inertia

$$
\bar{I}_{x^{\prime}}=\iint y^{\prime 2} d A
$$

Parallel Axis Theorem

If we know the moment of inertia of a body about an axis passing through its centroid, we can calculate the body's moment of inertia about any parallel axis

Example Problem

Moment of Inertia About Centroidal Axes

Moment of Inertia About Centroidal Axes

Moment of Inertia About the \boldsymbol{x} Axis

$$
I_{x}=\bar{I}_{x \prime}+d_{x}^{2} A=\frac{1}{36} b h^{3}+\left(\frac{1}{3} h\right)^{2} \frac{1}{2} b h
$$

$$
I_{x}=\frac{1}{36} b h^{3}+\frac{1}{18} b h^{3}
$$

Agrees with both the tabulated solution and our result from integration

Moment of Inertia About the \boldsymbol{y} Axis

$$
I_{y}=\bar{I}_{y^{\prime}}+d_{y}{ }^{2} A=\frac{1}{36} h b^{3}+\left(\frac{2}{3} b\right)^{2} \frac{1}{2} b h
$$

$$
I_{y}=\frac{1}{36} h b^{3}+\frac{4}{18} h b^{3}
$$

$$
I_{y}=\frac{9}{36} h b^{3}=\frac{1}{4} h b^{3}
$$

Agrees with our result from integration

