Parallel Axis Theorem Steven Vukazich San Jose State University

Recall the Definition of the Moment of Inertia of an Area About an Axis

Consider an axis *x* 'that is parallel to the *x* axis and passes through the centroid of the area. The distance between the two parallel axes is *d*

$$y = y' + d$$

$$I_x = \iint y^2 dA = \iint (y'+d)^2 dA$$

Expand and Examine Terms

Parallel Axis Theorem

Centroidal Moment of Inertia

$$\bar{I}_{x'} = \iint y'^2 \, dA$$

Parallel Axis Theorem

If we know the moment of inertia of a body about an axis passing through its centroid, we can calculate the body's moment of inertia about any parallel axis

Example Problem

Find the Moment of Inertia of the of the shaded area about the *x* and *y* axes shown. Use the Parallel Axis Theorem.

Note that this we have already found I_x , I_y and the location of the centroid for this shape using integration.

 \mathcal{X}

Moment of Inertia About Centroidal Axes

Moment of Inertia About Centroidal Axes

Moment of Inertia About the *x* **Axis**

$$I_x = \bar{I}_{x'} + d_x^2 A = \frac{1}{36}bh^3 + \left(\frac{1}{3}h\right)^2 \frac{1}{2}bh$$

$$I_x = \frac{1}{36}bh^3 + \frac{1}{18}bh^3$$

$$I_x = \frac{3}{36}bh^3 = \frac{1}{12}bh^3$$

Agrees with both the tabulated solution and our result from integration

Moment of Inertia About the y Axis

$$I_{y} = \bar{I}_{y'} + d_{y}^{2}A = \frac{1}{36}hb^{3} + \left(\frac{2}{3}b\right)^{2}\frac{1}{2}bh$$

$$I_y = \frac{1}{36}hb^3 + \frac{4}{18}hb^3$$

$$I_y = \frac{9}{36}hb^3 = \frac{1}{4}hb^3$$

Agrees with our result from integration

