Moment of Inertia of an Area About an Axis Steven Vukazich

 San Jose State University
Moment of Inertia of an Area About an Axis

Recall we used the first moment of the area about an axis to find the centroid. The Moment of Inertia is the second moment of the area about an axis

$$
I_{y}=\iint x^{2} d A
$$

Second moment of the area about the y axis

$$
I_{x}=\iint y^{2} d A
$$

Polar Moment of Inertia

Polar Moment of Inertia

 Second moment of the area about the z axis$$
I_{z}=J_{O}=\iint r^{2} d A
$$

$$
\begin{aligned}
& r^{2}=x^{2}+y^{2} \\
& J_{O}=\iint\left(x^{2}+y^{2}\right) d A=I_{x}+I_{y}
\end{aligned}
$$

Radius of Gyration

Total area

$$
k_{x}=\sqrt{\frac{I_{x}}{A}}
$$

$$
k_{O}=\sqrt{\frac{J_{O}}{A}}
$$

$$
k=\sqrt{\frac{I}{A}}
$$

Example Problem

Divide the Area into Vertical Strips

$$
I_{y}=\int_{0}^{b} x^{2} P d x=\int_{0}^{b} x^{2}\left(\frac{h}{b}\right) x d x=\frac{h}{b} \int_{0}^{b} x^{3} d x=\frac{h}{b}\left[\frac{x^{4}}{4}\right]_{0}^{b}=\frac{1}{4} b^{3} h
$$

Divide the Area into Horizontal Strips

Result Agrees with the Tabulated Value for a General Triangular Area in Textbook

Moment of Inertia About a Centroidal Axis

Find the Moment
of Inertia of the
of the shaded
area about the
centroidal x^{\prime} axis

$$
I_{x^{\prime}}=\iint y^{\prime 2} d A
$$

Cut Rectangle into Horizontal Strips

Moment of Inertia of a Rectangular Area About its Centriodal Axes

Agrees with the tabulated solution
Note also:

$$
I_{y^{\prime}}=\frac{b^{3} h}{12}
$$

