Moment of Inertia of an Area About an Axis Steven Vukazich San Jose State University

Moment of Inertia of an Area About an Axis

Polar Moment of Inertia

Polar Moment of Inertia Second moment of the area about the *z* axis

$$I_z = J_O = \iint r^2 dA$$

$$r^2 = x^2 + y^2$$

$$J_0 = \iint (x^2 + y^2) dA = I_x + I_y$$

Radius of Gyration Total area У У concentrated A = Total area of k_{y} at one point shaded region k_x ZO X $\boldsymbol{\chi}$ $\frac{I_x}{A}$ Jo I_y $k_y =$ $k_0 =$ k_{x} k

Example Problem

Divide the Area into Vertical Strips

$$I_{y} = \int_{0}^{b} x^{2} P dx = \int_{0}^{b} x^{2} \left(\frac{h}{b}\right) x dx = \frac{h}{b} \int_{0}^{b} x^{3} dx = \frac{h}{b} \left[\frac{x^{4}}{4}\right]_{0}^{b} = \frac{1}{4} b^{3} h$$

$$I_x = \int_0^n y^2 \, G \, dy = \int_0^n y^2 \left(b - \frac{b}{h} y \right) \, dy = b \int_0^n y^2 \, dx - \frac{b}{h} \int_0^n y^3 \, dx$$

$$I_x = b \left[\frac{y^3}{3} \right]_0^h - \frac{b}{h} \left[\frac{y^4}{4} \right]_0^h = \frac{1}{3} b h^3 - \frac{1}{4} b h^3 = \frac{1}{12} b h^3$$

Result Agrees with the Tabulated Value for a General Triangular Area in Textbook

Moment of Inertia About a Centroidal Axis

Moment of Inertia of a Rectangular Area About its Centriodal Axes

