Analysis of a Machine Steven Vukazich
San Jose State University

The pliers shown below consist of four pieces connected by pins at points C, D, E, and F. For the input force, P, applied at the grips of the pliers, find:

1. The output force that is clamping the piece held at point G.
2. The total force on each pin;

The weight of the pieces is negligible.

FBD of Each Piece of the Pliers

Start with Analysis of Piece BDF

Analysis of Piece BDF

$$
+\uparrow \sum F_{y}=0
$$

Analysis of Piece BDF

Next Analyze Piece ACEG

Analyze Piece ACEG

Analyze Piece ACEG

Check Equilibrium of Piece EFG

$$
\xrightarrow{+} \sum F_{x}=0
$$

FBD of Each Piece with Known Forces

Find the Maximum Total Force on Each Pin

Pin C and Pin D

$$
R_{C}=R_{D}=30.626 P
$$

Pin E

$$
R_{E}=\sqrt{(29.0 P)^{2}+(39.5 P)^{2}}=49.0 P
$$

Maximum Force is on Pin E

$$
R_{F}=\sqrt{(29.0 P)^{2}+(9.0 P)^{2}}=30.36 P
$$

For an input force of $P=30 \mathrm{lb}$, Pin E must resist a total force of $R_{E}=1470 \mathrm{lb}$

