Truss Analysis - Method of Sections Steven Vukazich

San Jose State University

General Procedure for the Analysis of Simple Trusses using the Method of Sections

1. Draw a Free Body Diagram (FBD) of the entire truss cut loose from its supports and find the support reactions using the equations of equilibrium (we will see that for some truss structures this step is not always necessary);
2. Make a cut through the members of the truss that are of interest. The cut must define two separate sections of the truss;
3. Draw a FBD of the section of the truss that is to be analyzed. There are three equations of equilibrium available to find unknown truss member forces;
4. Note that due to the geometry of simple trusses, several forces often intersect at a point. These points are often good points to take moment equilibrium about. Often one can isolate one unknown member force with a moment equilibrium equation.

Analysis Example Using the Method of Sections

Consider the idealized truss structure with a pin support at E and a roller support at B . The truss is subjected to applied loads at A, C and H . Find the truss member forces FG, BG, and BC

1. Draw a Free Body Diagram (FBD) of the entire truss cut loose from its supports and find the support reactions using the equations of equilibrium (we will see that for some truss structures this step is not always necessary)

Use Equilibrium to Find Support Reactions

$\dagger \sum M_{B}=0$

Use Equilibrium to Find Support Reactions

$B_{y}=10 k$

Use Equilibrium to Find Support Reactions

FBD Showing Known Support Reactions

2. Make a cut through the members of the truss that are of interest. The cut must define two separate sections of the truss; find unknown member forces

FBD of the Section to the Left of Cut $q-q$

Notes:

- Unknown truss member forces are assumed to act in tension (pulling away form the joint);
- Members FG and BG intersect at G ;
- Members BG and BC intersect at B.

3. Draw a FBD of the section of the truss that is to be analyzed. There are three equations of equilibrium available to find unknown truss member forces;

FBD of the Section to the Left of Cut $q-q$

Notes:

- Unknown truss member forces are assumed to act in tension (pulling away form the joint);
- Members FG and BG intersect at G;
- Members BG and BC intersect at B .

4. Note that due to the geometry of simple trusses, several forces often intersect at a point. These points are often good points to take moment equilibrium about. Often one can isolate one unknown member force with a moment equilibrium equation.

Equilibrium of Truss Section to Find Unknown Member Forces

$\pm \sum M_{G}=0$
$\mathrm{F}_{\mathrm{BC}}=1.5 \mathrm{k}$

Equilibrium of Truss Section to Find Unknown Member Forces

$\pm \sum M_{B}=0$

Equilibrium of Truss Section to Find Unknown Member Forces

$$
+\uparrow \sum F_{y}=0
$$

FBD of the Section to the Right of Cut $q-q$

Notes:

- Unknown truss member forces are assumed to act in tension (pulling away form the joint);
- Members FG and BG intersect at G;
- Members BG and BC intersect at B;
- Analysis yields same results.

FBD of the Section to the Right of Cut $q-q$

FBD of the Section to the Right of Cut $q-q$

FBD of the Section to the Right of Cut $q-q$

