Centroid of a Composite Area Steven Vukazich

San Jose State University

Recall the Definition of the Centroid of an Area

$$
A=\iint d A
$$

If We Can Divide the Area into Simple Shapes With Known Centroid

$$
A=\sum A_{i}
$$

Tabulated Centroids of Common Areas Can be Found in the Textbook

Shape		\bar{x}	\bar{y}	Area
Triangular area			$\frac{h}{3}$	$\frac{b h}{2}$
Quarter-circular area		$\frac{4 r}{3 \pi}$	$\frac{4 r}{3 \pi}$	$\frac{\pi r^{2}}{4}$
Semicircular area		0	$\frac{4 r}{3 \pi}$	$\frac{\pi r^{2}}{2}$
Quarter-elliptical area		$\frac{4 a}{3 \pi}$	$\frac{4 b}{3 \pi}$	$\frac{\pi a b}{4}$
Semielliptical area		0	$\frac{4 b}{3 \pi}$	$\frac{\pi a b}{2}$
Semiparabolic area		$\frac{3 a}{8}$	$\frac{3 h}{5}$	$\frac{2 a h}{3}$
Parabolic area		0	$\frac{3 h}{5}$	$\frac{4 a h}{3}$
Parabolic spandrel		$\frac{3 a}{4}$	$\frac{3 h}{10}$	$\frac{a h}{3}$
General spandrel		$\frac{n+1}{n+2} a$	$\frac{n+1}{4 n+2} h$	$\frac{a h}{n+1}$
Circular sector		$\frac{2 r \sin \alpha}{3 \alpha}$	0	αr^{2}

Example Problem

Divide Area into Simple Composite Shapes

Find Area and Location of Centroid of Each

 Shape Relative to Reference Coordinate Axes

Find Area and Location of Centroid of Each Shape Relative to Reference Coordinate Axes

Find Area and Location of Centroid of Each Shape Relative to Reference Coordinate Axes

Find the x Coordinate of the Centroid

$$
\begin{array}{l|c|c|}
\overline{x_{1}}=4.67 \mathrm{in} & \overline{x_{2}}=5.0 \mathrm{in} & \overline{x_{3}}=5.1512 \mathrm{in} \\
\hline A_{1}=10.5 \mathrm{in}^{2} & A_{2}=16 \mathrm{in}^{2} & A_{3}=-6.2832 \mathrm{in}^{2} \\
\hline
\end{array}
$$

$$
A=\sum A_{i}=10.5+16-6.2832=20.2168 \mathrm{in}^{2}
$$

$$
\sum \overline{x_{i}} A_{i}=(4.67)(10.5)+(5.0)(16)+(5.1512)(-6.2832)=96.635 \mathrm{in}^{3}
$$

$$
\bar{x}=\frac{\sum \bar{x}_{i} A_{i}}{A}=\frac{96.635 \mathrm{in}^{3}}{20.2168 \mathrm{in}^{2}}=4.78 \mathrm{in}
$$

Find the \boldsymbol{y} Coordinate of the Centroid

$$
\begin{array}{c|c|c|}
\hline \overline{y_{1}}=1.0 \mathrm{in} & \overline{y_{2}}=-2.0 \mathrm{in} & \overline{y_{3}}=0 \\
\hline A_{1}=10.5 \mathrm{in}^{2} & A_{2}=16 \mathrm{in}^{2} & A_{3}=-6.2832 \mathrm{in}^{2} \\
\hline
\end{array}
$$

$$
A=\sum A_{i}=10.5+16-6.2832=20.2168 \mathrm{in}^{2}
$$

$$
\sum \bar{y}_{i} A_{i}=(1.0)(10.5)+(-2.0)(16)+(0)(-6.2832)=-21.5 \mathrm{in}^{3}
$$

$$
\bar{y}=\frac{\sum \overline{y_{i}} A_{i}}{A}=\frac{-21.5 \mathrm{in}^{3}}{20.2168 \mathrm{in}^{2}}=-1.06 \mathrm{in}
$$

Coordinates of the Centroid

