Centroids and Centers of Gravity Steven Vukazich
 San Jose State University

Center of Gravity

The center of gravity is the point where the resultant weight of the golf club acts.

Uniform Plate Divided into n Small Elements

Coordinates of the Center of Gravity

As the Number of Sections Gets Large

For a Body With Uniform Density the Center of

 Gravity Coincides with the Centroid of the Shape

Centroid of an Area

$$
A=\iint d A
$$

$$
\bar{x}=\frac{\iint x d A}{A}
$$

First moment of the area about the y axis

$$
\bar{y}=\frac{\iint y d A}{A} \quad \begin{aligned}
& \text { First moment of the } \\
& \text { area about the } x \text { axis }
\end{aligned}
$$

The Centroid of a Body Will Be Located on an Axis of Symmetry

Tabulated Centroids of Common Areas Can be Found in the Textbook

Shape		\bar{x}	\bar{y}	Area
Triangular area			$\frac{h}{3}$	$\frac{b h}{2}$
Quarter-circular area		$\frac{4 r}{3 \pi}$	$\frac{4 r}{3 \pi}$	$\frac{\pi r^{2}}{4}$
Semicircular area		0	$\frac{4 r}{3 \pi}$	$\frac{\pi r^{2}}{2}$
Quarter-elliptical area		$\frac{4 a}{3 \pi}$	$\frac{4 b}{3 \pi}$	$\frac{\pi a b}{4}$
Semielliptical area		0	$\frac{4 b}{3 \pi}$	$\frac{\pi a b}{2}$
Semiparabolic area		$\frac{3 a}{8}$	$\frac{3 h}{5}$	$\frac{2 a h}{3}$
Parabolic area		0	$\frac{3 h}{5}$	$\frac{4 a h}{3}$
Parabolic spandrel		$\frac{3 a}{4}$	$\frac{3 h}{10}$	$\frac{a h}{3}$
General spandrel		$\frac{n+1}{n+2} a$	$\frac{n+1}{4 n+2} h$	$\frac{a h}{n+1}$
Circular sector		$\frac{2 r \sin \alpha}{3 \alpha}$	0	αr^{2}

Centroid of a Line

Tabulated Centroids of Common Lines Can be Found in the Textbook

Shape		\bar{x}	\bar{y}	Length
Quarter-circular are		$\frac{2 r}{\pi}$	$\frac{2 r}{\pi}$	$\frac{\pi r}{2}$
Semicircular arc				
Arcof circle			$\frac{2 r}{\pi}$	πr

Centroid of a Three-Dimensional Body

$$
V=\iiint d V
$$

$$
\bar{y}=\frac{\iiint y d V}{V}
$$

$$
\bar{z}=\frac{\iiint z d V}{V}
$$

Tabulated Centroids of Common Three-Dimensional Bodies Can be Found in the Textbook

-	10	\%
$=$	H_{0}^{1}	\%
\%)
-	-	+
-		\%

