Equilibrium of Rigid Bodies and Construction Free-Body Diagrams Steven Vukazich San Jose State University General procedure for the Analysis of Bodies in Static Equilibrium

- Choose the free body to isolate;
- Draw a Free Body Diagram (FBD) of the body;
 - Isolate the body from all of its surroundings,
 - Magnitudes and directions of all known and unknown forces acting on the body should be included and clearly indicated,
 - Indicate dimensions on the FBD,
- Write the **equations of equilibrium** and solve the equations for the unknown quantities.

General Procedure for the Construction of Free Body Diagrams

- Choose the free body to isolate;
- Isolate the body from all of its surroundings;
- Magnitudes and directions of all known and unknown forces acting on the body should be included and clearly indicated;
- Dimensions should be indicated on the FBD.
 Most errors in mechanics problems result from a mistake in the FBD

Reactive Forces at Supports for Planar Structures

Reactive force with unknown magnitude and known line of action

force is perpendicular to surface

Example of a Roller Support

Reactive force with unknown magnitude and known line of action

Force is perpendicular to rod or slot

Example of a collar on a guide rod

Reactive force with unknown magnitude and known line of action

Examples of short links

Reactive force with unknown magnitude and unknown direction

Examples pin supports and pin connections

This beam connection where only the beam web is bolted to the column is usually modeled as a pin connection

Reactive force with unknown magnitude, unknown direction, and an unknown moment

to express the three unknowns

Examples rigid supports and rigid connections

This beam connection where the beam flanges are welded to the column is usually modeled as a rigid (moment resisting) connection

Scalar Equations of Static equilibrium

General three-dimensional body

$$\sum F_x = 0 \qquad \sum F_y = 0 \qquad \sum F_z = 0$$
$$\sum M_x = 0 \qquad \sum M_y = 0 \qquad \sum M_z = 0$$

General two-dimensional (planar) body

$$\sum F_x = 0 \qquad \sum F_y = 0 \qquad \sum F_z = 0$$
$$\sum M_x = 0 \qquad \sum M_y = 0 \qquad \sum M_z = 0$$

Scalar Equations of Static equilibrium for concurrent force systems

Three-dimensional body with concurrent forces

$$\sum F_x = 0 \qquad \sum F_y = 0 \qquad \sum F_z = 0$$
$$\sum M_x = 0 \qquad \sum M_y = 0 \qquad \sum M_z = 0$$

Two-dimensional (planar) body with concurrent forces

$$\sum F_x = 0 \qquad \sum F_y = 0 \qquad \sum F_z = 0$$
$$\sum M_x = 0 \qquad \sum M_y = 0 \qquad \sum M_z = 0$$