Applications of the Scalar Product Steven Vukazich
 San Jose State University

Moment of a Force About an Axis

Since $\boldsymbol{\lambda}_{B L}$ is a unit vector, the scalar product of $\boldsymbol{M}_{\boldsymbol{B}}$ and $\boldsymbol{\lambda}_{\boldsymbol{B}}$ will be the projection of $\boldsymbol{M}_{\boldsymbol{B}}$ onto the axis BL.

Find $\lambda_{B L}$ in Cartesian Vector Form

$$
d=\sqrt{(-3)^{2}+(4)^{2}+(0)^{2}}=5.0 \mathrm{in}
$$

Find $\lambda_{B L}$ in Cartesian Vector Form

Moment of a Force About an Axis

$$
\boldsymbol{M}_{\boldsymbol{B}}=-1389.2 \hat{\imath}-3473.0 \hat{\jmath}-1984.6 \hat{k} \mathrm{lb}-\mathrm{in}
$$

$$
\lambda_{B L}=-0.6 \hat{\imath}+0.8 \hat{\jmath}
$$

$M_{B L}=M_{B} \cdot \lambda_{B L}$

$$
M_{B L}=M_{B x} \lambda_{B L x}+M_{B y} \lambda_{B L y}+M_{B z} \lambda_{B L z}
$$

$$
M_{B L}=(-1389.2)(-0.6)+(-3473.0)(0.8)+(-1984.6)(0)
$$

$$
M_{D I}=-1944.9 \mathrm{lb}-\mathrm{in} \longleftarrow \text { Negative sign indicates that the }
$$ projection is in the opposite direction of the sense of $\boldsymbol{\lambda}_{\boldsymbol{B L}}$

Angle Between Two Vectors in Space

Recall the Definition of the Scalar Product

From the definition of the scalar Product:

$$
\boldsymbol{P} \cdot \boldsymbol{Q}=P Q \cos \theta
$$

$$
\cos \theta=\frac{\boldsymbol{P} \cdot \boldsymbol{Q}}{P Q}
$$

We need to find the magnitude of each vector and their scalar product

For our problem:

$$
\cos \theta=\frac{\boldsymbol{F}_{A C} \cdot \boldsymbol{F}_{A D}}{F_{A C} F_{A D}}
$$

Vectors in Cartesian Vector Form

Recall that in a previous example, we found:

$$
\boldsymbol{F}_{A C}=186.21 \hat{\imath}-325.86 \hat{\jmath}+248.28 \hat{k} \mathrm{lb}
$$

$$
F_{A D}=240 \hat{\imath}-180 \hat{\jmath} \mathrm{lb}
$$

The magnitudes of each vector are given:

$$
F_{A C}=450 \mathrm{lb}
$$

$$
F_{A D}=300 \mathrm{lb}
$$

Scalar Product of Two Vectors in Cartesian Vector Form

$$
\boldsymbol{P} \cdot \boldsymbol{Q}=P_{x} Q_{x}+P_{y} Q_{y}+P_{z} Q_{z}
$$

$$
\boldsymbol{F}_{A C} \cdot \boldsymbol{F}_{A D}=F_{A C x} F_{A D x}+F_{A C y} F_{A D y}+F_{A C z} F_{A D z}
$$

$$
\boldsymbol{F}_{A C}=186.21 \hat{\imath}-325.86 \hat{\jmath}+248.28 \hat{k} \mathrm{lb}
$$

$$
F_{A D}=240 \hat{\imath}-180 \hat{\jmath} \mathrm{lb}
$$

$$
\boldsymbol{F}_{A C} \cdot \boldsymbol{F}_{A D}=(186.21)(240)+(-325.86)(-180)+(248.28)(0)
$$

$$
\boldsymbol{F}_{A C} \cdot \boldsymbol{F}_{A D}=103,344.9 \mathrm{lb}^{2}
$$

Angle Between the Two Vectors

$$
\cos \theta=\frac{\boldsymbol{F}_{A C} \cdot \boldsymbol{F}_{A D}}{F_{A C} F_{A D}}
$$

$$
\boldsymbol{F}_{A C} \cdot \boldsymbol{F}_{A D}=103,344.9 \mathrm{lb}^{2}
$$

$$
F_{A C}=450 \mathrm{lb} \quad F_{A D}=300 \mathrm{lb}
$$

$$
\cos \theta==\frac{103,344.9 \mathrm{lb}^{2}}{(450 \mathrm{lb})(300 \mathrm{lb})}=0.7655
$$

$$
\theta=\cos ^{-1}(0.7655)=40.0^{\circ}
$$

Angle Between Two Vectors in Space

