Scalar Product Steven Vukazich

San Jose State University

Definition of the Scalar Product of Two Vectors

Consider two vectors in space and let θ be the angle between the two vectors

The scalar product is also commonly referred to as the Dot Product

The scalar product can be thought of as the projection of vector \boldsymbol{P} onto the line-of-action of vector \boldsymbol{Q} multiplied by the magnitude of \boldsymbol{Q}

Order of the Scalar Product Operation

$$
S=\boldsymbol{P} \cdot \boldsymbol{Q}=\boldsymbol{Q} \cdot \boldsymbol{P}
$$

The order of the operation does not change the scalar product

Scalar Products of Unit Vectors

$\hat{\boldsymbol{\imath}} \cdot \hat{\boldsymbol{\jmath}}=(1)(1) \cos \left(90^{\circ}\right)=0$

$$
S=P Q \cos \theta
$$

Similarly;

$$
\hat{\imath} \cdot \widehat{\boldsymbol{k}}=0
$$

$$
y_{\uparrow}
$$

$$
\hat{\boldsymbol{j}} \cdot \widehat{\boldsymbol{k}}=0
$$

$\hat{\boldsymbol{\imath}} \cdot \hat{\boldsymbol{\imath}}=(1)(1) \cos \left(0^{\circ}\right)=1$
Similarly;

$$
\begin{array}{|l|}
\hline \hat{\boldsymbol{\jmath}} \cdot \hat{\boldsymbol{\jmath}}=1 \\
\hat{\boldsymbol{k}} \cdot \hat{\boldsymbol{k}}=1 \\
\hline
\end{array}
$$

Scalar Product of Two Vectors in Cartesian Vector Form

$$
S=\boldsymbol{P} \cdot \boldsymbol{Q}
$$

\boldsymbol{P} and \boldsymbol{Q} expressed in Cartesian Vector Form

$$
\begin{aligned}
& \boldsymbol{P}=P_{x} \hat{\imath}+P_{y} \hat{\jmath}+P_{z} \hat{k} \quad \boldsymbol{Q}=Q_{x} \hat{\imath}+Q_{y} \hat{\jmath}+Q_{z} \hat{k} \\
& S=\left(P_{x} \hat{\imath}+P_{y} \hat{\jmath}+P_{z} \hat{k}\right) \cdot\left(Q_{x} \hat{\imath}+Q_{y} \hat{\jmath}+Q_{z} \hat{k}\right) \\
& S=P_{x} Q_{x}+P_{y} Q_{y}+P_{z} Q_{z}
\end{aligned}
$$

