## Moment of a Force About a Point in Three-Dimensions

Steven Vukazich

San Jose State University

## Recall the Definition of the Moment of a Force $\boldsymbol{F}$ about a Point $\boldsymbol{O}$



$$
M_{O}=r \times F
$$

$$
M_{O}=r F \sin \theta
$$

$r$ is a position vector that must satisfy:

- Tail of $\boldsymbol{r}$ is at point $\boldsymbol{O}$;
- Tip can be on any point on the line-of-action of $\boldsymbol{F}$

Magnitude of $\boldsymbol{M}_{\boldsymbol{O}}$ is the area of the parallelogram defined by $\boldsymbol{r}$ and $\boldsymbol{F}$
Direction of $\boldsymbol{M}_{\boldsymbol{O}}$ is perpendicular to the plane defined by $\boldsymbol{r}$ and $\boldsymbol{F}$
Sense of $\boldsymbol{M}_{\boldsymbol{O}}$ is defined by the right-hand rule

## Moment of a Force about a Point when the Position Vector and Force Vector are in Cartesian Vector Form



$$
\boldsymbol{M}_{\boldsymbol{O}}=\left(r_{y} F_{z}-r_{z} F_{y}\right) \hat{\imath}+\left(r_{z} F_{x}-r_{x} F_{z}\right) \hat{\jmath}+\left(r_{x} F_{y}-r_{y} F_{x}\right) \hat{k}
$$

## Example Problem



## Express $F$ in Cartesian Vector Form



$$
d=\sqrt{(0)^{2}+(4)^{2}+(-7)^{2}}=8.06226 \text { in }
$$

## Express $\boldsymbol{F}$ in Cartesian Vector Form



## Express $r_{A B}$ in Cartesian Vector Form



$$
r_{A B}=-10 \hat{\imath}+7 \hat{k} \text { in }
$$

## Calculate the Moment of a Force about Point $B$

$\boldsymbol{M}_{\boldsymbol{B}}=\boldsymbol{r}_{\boldsymbol{A} \boldsymbol{B}} \times \boldsymbol{F} \quad \boldsymbol{M}_{\boldsymbol{B}}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ r_{A B x} & r_{A B y} & r_{A B z} \\ F_{x} & F_{y} & F_{z}\end{array}\right|$
$\boldsymbol{F}=198.456 \hat{\jmath}-347.30 \hat{k} \mathrm{lb}$

$\boldsymbol{M}_{\boldsymbol{B}}=(-10)(198.456) \hat{k}-(-10)(-347.30) \hat{\jmath}-(7)(198.456) \hat{\imath} \mathrm{lb}-\mathrm{in}$

$$
\boldsymbol{M}_{\boldsymbol{B}}=-1389.2 \hat{\imath}-3473.0 \hat{\jmath}-1984.6 \hat{k} \mathrm{lb}-\mathrm{in}
$$

## Express $r_{C B}$ in Cartesian Vector Form



$$
r_{C B}=-10 \hat{\imath}+4 \hat{\jmath} \text { in }
$$

## Calculate the Moment of a Force about Point $B$

$$
\begin{gathered}
\boldsymbol{M}_{\boldsymbol{B}}=\boldsymbol{r}_{\boldsymbol{C}} \times \boldsymbol{F} \\
\boldsymbol{r}_{\boldsymbol{C} \boldsymbol{B}}=-10 \hat{\imath}+4 \hat{\jmath} \text { in }
\end{gathered} \quad \boldsymbol{M}_{\boldsymbol{B}}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
r_{C B x} & r_{C B y} & r_{C B z} \\
F_{x} & F_{y} & F_{z}
\end{array}\right|
$$

$\boldsymbol{F}=198.456 \hat{\jmath}-347.30 \hat{k} \mathrm{lb}$


$$
\begin{aligned}
\boldsymbol{M}_{\boldsymbol{B}}= & (4)(-347.30) \hat{\imath}+(-10)(198.456) \hat{k}-(-10)(-347.30) \hat{\jmath} \mathrm{lb}-\mathrm{in} \\
& \boldsymbol{M}_{\boldsymbol{B}}=-1389.2 \hat{\imath}-3473.0 \hat{\jmath}-1984.6 \hat{k} \mathrm{lb}-\mathrm{in} \quad \text { OK }- \text { Same Result }
\end{aligned}
$$

## Final Result



$$
M_{B}=\sqrt{(-1389.2)^{2}+(-3473.0)^{2}+(-1984.6)^{2}}=4234.4 \mathrm{lb}-\mathrm{in}
$$

## Follow-Up Question



## Answer



