Moment of a Force About a Point Steven Vukazich
 San Jose State University

Which application of the force F would provide the most rotation to loosen the nut at point O ?

Position B

Proof of the correct answer lies in the concept of the moment of a force about a point

Moment of a Force \boldsymbol{F} about a Point \boldsymbol{O}

$$
M_{O}=r \times F
$$

$$
M_{O}=r F \sin \theta
$$

\boldsymbol{r} is a position vector that must satisfy:

- Tail of \boldsymbol{r} is at point \boldsymbol{O};
- Tip can be on any point on the line-of-action of \boldsymbol{F}
z
Magnitude of $\boldsymbol{M}_{\boldsymbol{O}}$ is the area of the parallelogram defined by \boldsymbol{r} and \boldsymbol{F}
Direction of $\boldsymbol{M}_{\boldsymbol{O}}$ is perpendicular to the plane defined by \boldsymbol{r} and \boldsymbol{F}
Sense of $\boldsymbol{M}_{\boldsymbol{O}}$ is defined by the right-hand rule

Moment of a Force \boldsymbol{F} about Point \boldsymbol{O}

$$
M_{O}=r_{2} F \sin 90^{\circ}=d F
$$

Let's Examine Our Initial Question Applying the Concept of Moment of a Force About a Point

Moment of a Force about a Point for Planar Problems

$$
M_{O}=r \times F
$$

$M_{O}=r F \sin \theta$
$M_{O}=d F$

\boldsymbol{r} is a position vector that must satisfy:

- Tail of \boldsymbol{r} is at point \boldsymbol{O};
- Tip can be on any point on the line-of-action of \boldsymbol{F}

The direction of $\boldsymbol{M}_{\boldsymbol{O}}$ will always be in the z direction
Sense of $\boldsymbol{M}_{\boldsymbol{O}}$ is defined by the right-hand rule

Sense of Moment for Planar Problems

The direction of $\boldsymbol{M}_{\boldsymbol{O}}$ will always be in the z direction for a planar problem

The sense of $\boldsymbol{M}_{\boldsymbol{O}}$ is defined by the right-hand rule

- Counter-clockwise (positive z direction)
- Clockwise (negative z direction)

Varignon's Theorem

$$
M_{O}=r \times F_{1}+r \times F_{2}+r \times F_{3}=M_{O}=r \times\left(F_{1}+F_{2}+F_{3}\right)=r \times R
$$

The moment about a given point O of the resultant of several concurrent forces is equal to the sum of the moments of the various forces about the same point O

Moment of a Force in Cartesian Vector Form about a Point

$$
M_{O}=r \times F_{x} \hat{\imath}+r \times F_{y} \hat{\jmath}+r \times F_{3} \hat{k}=M_{O}=r \times F
$$

Moment of a Force about a Point when the Position Vector and Force Vector are in Cartesian Vector Form

$\boldsymbol{r}=r_{x} \hat{\imath}+r_{y} \hat{\jmath}+r_{z} \hat{k}$	$\boldsymbol{M}_{\boldsymbol{O}}=\boldsymbol{r} \times \boldsymbol{F}$
$\boldsymbol{F}=F_{x} \hat{\imath}+F_{y} \hat{\jmath}+F_{z} \hat{k}$	$\boldsymbol{M}_{\boldsymbol{O}}=\left\|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ r_{x} & r_{y} & r_{z} \\ F_{x} & F_{y} & F_{z}\end{array}\right\|$

Almost always the best way to calculate the moment of a force about a point for threedimensional problems

$$
\boldsymbol{M}_{\boldsymbol{O}}=\left(r_{y} F_{z}-r_{z} F_{y}\right) \hat{\imath}+\left(r_{z} F_{x}-r_{x} F_{z}\right) \hat{\jmath}+\left(r_{x} F_{y}-r_{y} F_{x}\right) \hat{k}
$$

Moment of a Force about a Point for Planar Problems

Calculate the moment of each component of \boldsymbol{F} using the perpendicular distance from point \boldsymbol{O}.

Add the moment of each component (counter-clockwise rotation is positive and clockwise rotation is negative)
to find the moment of the force \boldsymbol{F} about point \boldsymbol{O}.

