Vector Product Steven Vukazich San Jose State University

Definition of the Vector Product of Two Vectors

Note that the order of the vector product operation changes the sense of the vector product

$$V' = Q \times P$$

$$V' = PQ\sin\theta$$

Vector Products of Unit Vectors

$$\hat{i} \times \hat{j} = \hat{k}$$

$$\hat{j} \times \hat{i} = -\hat{k}$$

$$\hat{k} \times \hat{i} = \hat{j}$$

$$\hat{i} \times \hat{k} = -\hat{j}$$

$$\hat{k} \times \hat{k} = 0$$

Vector Product of Two Vectors in Cartesian Vector Form

$$V = P \times Q$$

P and Q expressed in Cartesian Vector Form

$$\boldsymbol{P} = P_x \hat{\imath} + P_y \hat{\jmath} + P_z \hat{k} \qquad \boldsymbol{Q} = Q_x \hat{\imath} + Q_y \hat{\jmath} + Q_z \hat{k}$$

$$\boldsymbol{V} = (P_x \hat{\imath} + P_y \hat{\jmath} + P_z \hat{k}) \times (Q_x \hat{\imath} + Q_y \hat{\jmath} + Q_z \hat{k})$$

$$\boldsymbol{V} = \left(P_y Q_z - P_z Q_y\right)\hat{\boldsymbol{\iota}} + \left(P_z Q_x - P_x Q_z\right)\hat{\boldsymbol{j}} + \left(P_x Q_y - P_y Q_x\right)\hat{\boldsymbol{k}}$$

Vector Product of Two Vectors in Cartesian Vector Form

 $V = P \times Q$

Convenient "trick" to find vector product of two vectors in Cartesian Vector Form is to arrange the unit vectors and components in matrix form

