Vector Product

 Steven VukazichSan Jose State University

Definition of the Vector Product of Two Vectors

Two Vectors in space define a plane

Magnitude of \boldsymbol{V} is the area of the parallelogram defined by \boldsymbol{P} and \boldsymbol{Q}

Direction of \boldsymbol{V} is perpendicular to the plane defined by \boldsymbol{P} and \boldsymbol{Q}

Sense of \boldsymbol{V} is defined by the righthand rule

Definition of the Vector Product of Two Vectors

Note that the order of the vector product operation changes the sense of the vector product

$$
V^{\prime}=\boldsymbol{Q} \times \boldsymbol{P}
$$

$V^{\prime}=P Q \sin \theta$

Vector Products of Unit Vectors

$$
\hat{\imath} \times \hat{\jmath}=\widehat{\boldsymbol{k}}
$$

$$
\hat{\boldsymbol{\jmath}} \times \hat{\boldsymbol{\imath}}=-\widehat{\boldsymbol{k}}
$$

$$
\hat{\boldsymbol{k}} \times \hat{\imath}=\hat{\boldsymbol{\jmath}}
$$

$$
\hat{\boldsymbol{\imath}} \times \widehat{\boldsymbol{k}}=-\hat{\boldsymbol{\jmath}}
$$

$$
\hat{\imath} \times \hat{\imath}=\mathbf{0}
$$

$$
\widehat{\boldsymbol{k}} \times \widehat{\boldsymbol{k}}=\mathbf{0}
$$

Etc.

Vector Product of Two Vectors in Cartesian Vector Form

$$
\boldsymbol{V}=\boldsymbol{P} \times \boldsymbol{Q}
$$

\boldsymbol{P} and \boldsymbol{Q} expressed in Cartesian Vector Form

$$
\boldsymbol{P}=P_{x} \hat{\imath}+P_{y} \hat{\jmath}+P_{z} \hat{k} \quad \boldsymbol{Q}=Q_{x} \hat{\imath}+Q_{y} \hat{\jmath}+Q_{z} \hat{k}
$$

$$
\boldsymbol{V}=\left(P_{x} \hat{\imath}+P_{y} \hat{\jmath}+P_{z} \hat{k}\right) \times\left(Q_{x} \hat{\imath}+Q_{y} \hat{\jmath}+Q_{z} \hat{k}\right)
$$

$$
\boldsymbol{V}=\left(P_{y} Q_{z}-P_{z} Q_{y}\right) \hat{\imath}+\left(P_{z} Q_{x}-P_{x} Q_{z}\right) \hat{\jmath}+\left(P_{x} Q_{y}-P_{y} Q_{x}\right) \hat{k}
$$

Vector Product of Two Vectors in Cartesian Vector Form

$$
V=P \times \boldsymbol{Q}
$$

Convenient "trick" to find vector product of two vectors in Cartesian Vector Form is to arrange the unit vectors and components in matrix form

$$
\boldsymbol{V}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
P_{x} & P_{y} & P_{z} \\
Q_{x} & Q_{y} & Q_{z}
\end{array}\right| \quad \begin{aligned}
& \text { Vector product is } \\
& \text { the determinate of } \\
& \text { the } 3 \times 3 \text { matrix }
\end{aligned}
$$

$$
\boldsymbol{V}=\left(P_{y} Q_{z}-P_{z} Q_{y}\right) \hat{\imath}+\left(P_{z} Q_{x}-P_{x} Q_{z}\right) \hat{\jmath}+\left(P_{x} Q_{y}-P_{y} Q_{x}\right) \hat{k}
$$

