Forces in Three-Dimensional Space Steven Vukazich

San Jose State University

Rectangular Components of a Force in Three-Dimensional Space

Define unit vectors in the x, y and z directions

Rectangular Components of a Force in Three-Dimensional Space

Cartesian Vector Form of \boldsymbol{F}

$$
\boldsymbol{F}=F_{x} \hat{\imath}+F_{y} \hat{\jmath}+F_{z} \hat{k}
$$

Z

Scalar components of \boldsymbol{F}

$$
F_{x}=F \cos \theta_{x}
$$

$$
F_{y}=F \cos \theta_{y}
$$

$$
F_{z}=F \cos \theta_{z}
$$

Magnitude of \boldsymbol{F}

$$
\longrightarrow F_{F_{\imath} \hat{l}} x=\sqrt{F_{x}^{2}+F_{y}^{2}+F_{z}^{2}}
$$

Rectangular Components of a Force in Three-Dimensional Space

$$
\boldsymbol{F}=F_{x} \hat{\imath}+F_{y} \hat{\jmath}+F_{z} \hat{k}
$$

Direction of \boldsymbol{F} is defined by direction cosines

$$
\begin{gathered}
\lambda_{x}=\cos \theta_{x} \\
\lambda_{y}=\cos \theta_{y} \\
\lambda_{z}=\cos \theta_{z}
\end{gathered}
$$

$$
F_{x} \hat{l} \quad x
$$

Rectangular Components of a Force in Three-Dimensional Space

unit vector in the direction of \boldsymbol{F}

