Two-Dimensional Equilibrium of a Point Example Problem Steven Vukazich

 San Jose State University
General procedure for the Analysis of Planar Bodies in Static Equilibrium

- Choose the free body to isolate;
- Draw a Free Body Diagram (FBD) of the body;
- Isolate the body from all of its surroundings,
- Magnitudes and directions of all known and unknown forces acting on the body should be included and clearly indicated,
- Indicate dimensions on the FBD,
- Write the equations of equilibrium and solve the equations for the unknown quantities.

Example Problem

Free-Body Diagram of Point A

Free Body Diagram of Point A

Equilibrium in the x Direction

Equilibrium in the y Direction

$$
\begin{aligned}
& F_{A B} \sin 2^{\circ}=0.0349 F_{A B} \\
& +\uparrow F_{A B} \cos 2^{\circ}=0.999 F_{A B} \\
& +\uparrow F_{y}=0 \\
& \\
& \\
& 0.9500 \mathrm{lb}
\end{aligned}
$$

Solve Equilibrium Equations

Equation 1

$$
-0.0349 F_{A B}+0.866 F_{\text {rope }}=0
$$

$$
F_{A B}=\frac{0.866 F_{\text {rope }}}{0.0349}=24.814 F_{\text {rope }}
$$

$$
F_{A B}=24.814 F_{\text {rope }}
$$

Equation $2 \quad 0.999 F_{A B}-0.5 F_{\text {rope }}-3500=0$

$$
\begin{aligned}
& 0.999\left(24.814 F_{\text {rope }}\right)-0.5 F_{\text {rope }}-3500=0 \\
& F_{\text {rope }}=144 \mathrm{lb} \\
& F_{A B}=24.814(144) \\
& F_{A B}=3576 \mathrm{lb}
\end{aligned}
$$

Free Body Diagram of Point A Showing Results

