Two-Dimensional Equilibrium of a Point Example Problem Steven Vukazich San Jose State University General procedure for the Analysis of Planar Bodies in Static Equilibrium

- Choose the free body to isolate;
- Draw a Free Body Diagram (FBD) of the body;
 - Isolate the body from all of its surroundings,
 - Magnitudes and directions of all known and unknown forces acting on the body should be included and clearly indicated,
 - Indicate dimensions on the FBD,
- Write the equations of equilibrium and solve the equations for the unknown quantities.

Example Problem

A 3500 lb automobile is suspended from a crane. The support at A is pulled by a person with a rope at point C so the automobile is held in the position shown. What is the tension in the rope (i.e. how hard must the person pull on the rope to hold the automobile in the position shown)? Free-Body Diagram of Point A

Free Body Diagram of Point A

Equilibrium in the *x* Direction

Equilibrium in the *y* Direction

Equation 1

$$-0.0349F_{AB} + 0.866F_{rope} = 0$$

$$F_{AB} = \frac{0.866F_{rope}}{0.0349} = 24.814F_{rope}$$

$$F_{AB} = 24.814F_{rope}$$

Equation 2
$$0.999F_{AB} - 0.5F_{rope} - 3500 = 0$$

$$0.999(24.814F_{rope}) - 0.5F_{rope} - 3500 = 0$$

$$F_{rope} = 144$$
 lb

$$F_{AB} = 24.814(144)$$

 $F_{AB} = 3576$ lb

Free Body Diagram of Point A Showing Results

