Three-Dimensional Equilibrium

 of a Point Example Steven Vukazich San Jose State University
General procedure for the Analysis of Bodies in Static Equilibrium

- Choose the free body to isolate;
- Draw a Free Body Diagram (FBD) of the body;
- Isolate the body from all of its surroundings,
- Magnitudes and directions of all known and unknown forces acting on the body should be included and clearly indicated,
- Indicate dimensions on the FBD,
- Write the equations of equilibrium and solve the equations for the unknown quantities.

Scalar Equations of Static Equilibrium for Concurrent Force Systems

$$
\vec{R}=\sum \vec{F}_{i}=\overrightarrow{0}
$$

Two-dimensional (planar) body with concurrent

$$
\sum F_{x}=0 \quad \sum F_{y}=0 \quad \sum F_{z}=0
$$

Three-dimensional

 body with concurrent forces$$
\sum F_{x}=0 \quad F_{y}=0 \quad \sum F_{z}=0
$$

Free Body Diagram of Point A

Express Force $F_{A B}$ in Cartesian Vector Form

$$
d_{x}=x_{B}-x_{A}=-4.2-0=-4.2 \mathrm{~m}
$$

Coordinates of Point B: $(-4.2,0,0) \quad d_{y}=y_{B}-y_{A}=0-5.60=-5.6 \mathrm{~m}$
Coordinates of Point A: $(0,5.60,0) \quad d_{z}=z_{B}-z_{A}=0-0=0$

$$
d=\sqrt{(-4.2)^{2}+(-5.6)^{2}+(0)^{2}}=7.0 \mathrm{~m}
$$

$$
F_{A B X}=\left(\frac{\left(x_{B}-x_{A}\right)}{d}\right) F_{A B}=\left(\frac{-4.2}{7.0}\right) F_{A B}=-0.60 F_{A B}
$$

Tip minus Tail
$F_{A B y}=\left(\frac{\left(y_{B}-y_{A}\right)}{d}\right) F_{A B}=\left(\frac{-5.6}{7.0}\right) F_{A B}=-0.80 F_{A B}$
$F_{A B Z}=\left(\frac{\left(z_{B}-z_{A}\right)}{d}\right) F_{A B}=\left(\frac{0}{7.0}\right) F_{A B}=0$
$\boldsymbol{F}_{A B}=-0.60 F_{A B} \hat{\imath}-0.80 F_{A B} \hat{\jmath}$

Express Force $F_{A C}$ in Cartesian Vector Form

$$
d_{x}=x_{B}-x_{A}=2.4-0=2.4 \mathrm{~m}
$$

Coordinates of Point C: $(2.4,0,4.20) \quad d_{y}=y_{B}-y_{A}=0-5.60=-5.6 \mathrm{~m}$
Coordinates of Point A: $(0,5.60,0) \quad d_{z}=z_{B}-z_{A}=4.2-0=4.2 \mathrm{~m}$

$$
d=\sqrt{(2.4)^{2}+(-5.6)^{2}+(4.2)^{2}}=7.4 \mathrm{~m}
$$

$$
F_{A C x}=\left(\frac{\left(x_{B}-x_{A}\right)}{d}\right) F_{A C}=\left(\frac{2.4}{7.4}\right) F_{A C}=0.324 F_{A C}
$$

Tip minus Tail
$F_{A C y}=\left(\frac{\left(y_{B}-y_{A}\right)}{d}\right) F_{A C}=\left(\frac{-5.6}{7.4}\right) F_{A C}=-0.757 F_{A C}$
$F_{A C Z}=\left(\frac{\left(z_{B}-z_{A}\right)}{d}\right) F_{A C}=\left(\frac{4.2}{7.4}\right) F_{A C}=0.568 F_{A C}$

$$
\boldsymbol{F}_{A C}=0.324 F_{A C} \hat{\imath}-0.757 F_{A C} \hat{\jmath}+0.568 F_{A C} \hat{k}
$$

Express Force $F_{A D}$ in Cartesian Vector Form

$$
d_{x}=x_{D}-x_{A}=0-0=0
$$

Coordinates of Point D: $(0,0,-3.3) \quad d_{y}=y_{D}-y_{A}=0-5.6=-5.6 \mathrm{~m}$
Coordinates of Point A: $(0,5.60,0) \quad d_{z}=z_{D}-z_{A}=-3.3-0=-3.3 \mathrm{~m}$

$$
d=\sqrt{(0)^{2}+(-5.6)^{2}+(-3.3)^{2}}=6.4 \mathrm{~m}
$$

$$
\begin{aligned}
& F_{A D x}=\left(\frac{\left(x_{B}-x_{A}\right)}{d}\right) F_{A D}=\left(\frac{0}{6.4}\right) F_{A D}=0 \\
& F_{A D y}=\left(\frac{\left(y_{B}-y_{A}\right)}{d}\right) F_{A D}=\left(\frac{-5.6}{6.4}\right) F_{A D}=-0.862 F_{A D} \\
& F_{A D z}=\left(\frac{\left(z_{B}-z_{A}\right)}{d}\right) F_{A D}=\left(\frac{-3.3}{6.4}\right) F_{A D}=-0.508 F_{A D}
\end{aligned}
$$

$$
\boldsymbol{F}_{A D}=-0.862 F_{A D} \hat{\jmath}-0.508 F_{A D} \hat{k}
$$

Forces in Cartesian Vector Form

$$
\boldsymbol{F}_{\boldsymbol{A B}}=-0.60 F_{A B} \hat{\imath}-0.80 F_{A B} \hat{\jmath}
$$

$$
\boldsymbol{F}_{\boldsymbol{A C}}=0.324 F_{A C} \hat{\imath}-0.757 F_{A C} \hat{\jmath}+0.568 F_{A C} \hat{k}
$$

$$
\boldsymbol{F}_{A D}=-0.862 F_{A D} \hat{\jmath}-0.508 F_{A D} \hat{k}
$$

$$
\boldsymbol{F}_{\text {balloon }}=800 \hat{\jmath} \mathrm{kN}
$$

Equilibrium Equations

$$
\begin{aligned}
& \sum F_{x}=0 \\
& 11-0.60 F_{A B}+0.324 F_{A C}=0 \\
& \sum F_{y}=0 \\
& 2,-0.80 F_{A B}-0.757 F_{A C}-0.862 F_{A D}+800=0 \\
& \sum F_{Z}=0 \\
& 3 y^{2}=0.568 F_{A C}-0.508 F_{A D}=0
\end{aligned}
$$

Solve Equilibrium Equations

Equation 1

$$
\begin{array}{ll}
F_{A B}=\frac{-0.324}{-0.60} F_{A C} & F_{A D}=\frac{-0.568}{-0.508} F_{A C} \\
F_{A B}=0.540 F_{A C} & F_{A D}=1.118 F_{A C}
\end{array}
$$

Equation 2

$$
\begin{array}{ll}
-0.80 F_{A B}-0.757 F_{A C}-0.862 F_{A D}+800=0 \\
-0.80\left(0.540 F_{A C}\right)-0.757 F_{A C}-0.862\left(1.118 F_{A C}\right)+800=0 \\
F_{A C}=371.6 \mathrm{kN} & \\
F_{A B}=0.540(371.6) & F_{A D}=1.118(371.6) \\
F_{A B}=200.7 \mathrm{kN} & F_{A D}=415.4 \mathrm{kN}
\end{array}
$$

Free Body Diagram of Point A Showing Results

