Forces in Two-Dimensional Space Steven Vukazich

 San Jose State University
Definitions and Terminology

Vectors are used to represent forces in space. Forces, like vectors, have both magnitude and direction.

Rectangular Components of a Force in Two-Dimensional Space

Define unit vectors in the x and the y directions

Rectangular Components of a Force in Two-Dimensional Space

Scalar components of \boldsymbol{F}
Cartesian Vector Form of \boldsymbol{F}

$$
F_{x}=F \cos \theta_{x}
$$

$y \uparrow \quad \boldsymbol{F}=F_{x} \hat{\imath}+F_{y} \hat{\jmath}$

$$
F_{y}=F \cos \theta_{y}=F \sin \theta_{x}
$$

Magnitude of \boldsymbol{F}

$$
F=\sqrt{F_{x}^{2}+F_{y}^{2}}
$$

Direction of \boldsymbol{F}

$$
F_{x} \hat{l} \quad x \quad \tan \theta_{x}=\frac{F_{y}}{F_{x}}
$$

Rectangular Components of a Force in Two-Dimensional Space

Rectangular Components of a Force in Two-Dimensional Space

$$
\boldsymbol{F}=F_{x} \hat{\imath}+F_{y} \hat{\jmath}
$$

unit vector in the direction of \boldsymbol{F}

$$
y^{\prime}
$$

$$
\lambda=\left(\cos \theta_{x}\right) \hat{\imath}+\left(\cos \theta_{y}\right) \hat{\jmath}
$$

$$
\boldsymbol{F}=F \lambda
$$

$\boldsymbol{F}=F\left[\left(\cos \theta_{x}\right) \hat{\imath}+\left(\cos \theta_{y}\right) \hat{\jmath}\right]$
x

