Statically Indeterminate Frame Example Steven Vukazich
 San Jose State University

Steps in Solving an Indeterminate Structure using the Force Method

Determine degree of Indeterminacy
Let $n=$ degree of indeterminacy
(i.e. the structure is indeterminate to the nth degree)

Define Primary Structure and the n Redundants

Example Problem

For the indeterminate frame subjected to the point loads shown, find the support reactions and draw the bending moment diagram for the frame. $E I$ is the same for both the horizontal and vertical members.

FBD of the Frame

Define Primary Structure and Redundant

- Remove all applied loads from the actual structure;
- Remove support reactions or internal forces to define a primary structure;
- Removed reactions or internal forces are called redundants;
- Same number of redundants as degree of indeterminacy
- Primary structure must be stable and statically determinate;
- Primary structure is not unique - there are several choices.

Define and Solve the Primary Problem

- Apply all loads on actual structure to the primary structure;
- Define a reference coordinate system;
- Calculate relevant deflections at points where redundants were removed.

Solve the Primary Problem

Solve the Primary Problem

Virtual System
 to measure Δ_{D}

B

Need to
construct
the M_{Q}
diagram

FBD of the Primary Problem

M_{P} Diagram for the Primary Problem

FBD of the Virtual System

M_{Q} Diagram for the Primary Problem

Solve the Primary Problem

$$
1 \cdot \Delta_{D}=\frac{1}{E I} \int_{0}^{L} M_{Q} M_{P} d x
$$

$$
\Delta_{D}=-\frac{23,125 \mathrm{k}-\mathrm{ft}^{3}}{E I}
$$

250 k-ft

$$
-\frac{1}{2} M_{1}\left(M_{3}+M_{4}\right) L \quad-\frac{1}{6}\left(M_{1}+2 M_{2}\right) M_{3} L
$$

$-\left(\frac{1}{2}\right)(10 \mathrm{ft})(250 \mathrm{k}-\mathrm{ft}+150 \mathrm{k}-\mathrm{ft})(10 \mathrm{ft})$
$-20,000 \mathrm{k}$-ft ${ }^{3}$

$$
\begin{aligned}
& -\left(\frac{1}{6}\right)[5 \mathrm{ft}+2(10 \mathrm{ft})](150 \mathrm{k}-\mathrm{ft})(5 \mathrm{ft}) \\
& -3,125 \mathrm{k}-\mathrm{ft}^{3}
\end{aligned}
$$

reaundant tor eacn redundant probiem.

- Calculate the flexibility coefficient associated with the relevant deflections for each redundant problem;

Redundant Problem

reaundant tor eacn redundant probiem.

- Calculate the flexibility coefficient associated with the relevant deflections for each redundant problem;

Flexibility Coefficient

Solve the Flexibility Coefficient Problem

Real System

Solve the Flexibility Coefficient Problem

Virtual System
 to measure $\delta_{D D}$

FBD of the Flexibility Coefficient Problem

M_{P} Diagram for the Flexibility Coefficient Problem

M_{Q} Diagram for the Flexibility Coefficient Problem

Solve the Flexibility Coefficient Problem

$$
1 \cdot \delta_{D D}=\frac{1}{E I} \int_{0}^{L} M_{Q} M_{P} d x
$$

$M_{1} M_{3} L$
$(10 \mathrm{ft})(10 \mathrm{ft})(10 \mathrm{ft})$
$1000 \mathrm{ft}^{3}$
$M_{1} 10 \mathrm{ft}$

$$
\delta_{D D}=\frac{1333 \mathrm{ft}^{3}}{E I}
$$

$$
\frac{1}{3} M_{1} M_{3} L
$$

$$
\Delta_{D D}=D_{y}\left(\frac{1333 \mathrm{ft}^{3}}{E I}\right)
$$

$$
\left(\frac{1}{3}\right)(10 \mathrm{ft})(10 \mathrm{ft})(10 \mathrm{ft})
$$

$$
333.333 \mathrm{ft}^{3}
$$

Compatibility Equation at Point D

Compatibility at Point D

$$
\Delta_{D}+\Delta_{D D}=0
$$

Compatibility Equation in terms of Redundant and Flexibility Coefficient

$$
\begin{gathered}
\Delta_{D}+D_{y} \delta_{D D}=0 \\
-\frac{23,125 \mathrm{k}-\mathrm{ft}^{3}}{E I}+D_{y}\left(\frac{1333 \mathrm{ft}^{3}}{E I}\right)=0
\end{gathered}
$$

Solve for $\boldsymbol{D}_{\boldsymbol{y}}$

$$
D_{y}=\frac{23,125 \mathrm{k}-\mathrm{ft}^{3}}{E I}\left(\frac{E I}{1333 \mathrm{ft}^{3}}\right) \quad D_{y}=17.34 \mathrm{k}
$$

Moment Diagram for the Frame

> Moment diagram is drawn on the compression side of the member

Moment Diagrams for the Primary and Redundant Problems

Choose sign convention for internal forces for both horizontal and vertical members

For horizontal member BDE

For vertical member ABC

