Analysis of Statically Indeterminate Structures Using the Force Method Steven Vukazich

San Jose State University

Statically Indeterminate Structures

> At the beginning of the course, we learned that a stable structure that contains more unknowns than independent equations of equilibrium is Statically Indeterminate.

Advantages

- Redundancy (several members must fail for the structure to become unstable);
- Often maximum stresses is certain members are reduced;
- Usually deflections are reduced.

Disadvantages

- Connections are often more expensive;
- Finding forces and deflections using hand analysis is much more complicated.

Steps in Solving an Indeterminate Structure using the Force Method

Force Method of Analysis

Consider the beam

Beam is stable

FBD

$$
X=5
$$

Statically Indeterminate to the $2^{\text {nd }}$ degree

Define Primary Structure and Redundants

- Remove all applied loads from the actual structure;
- Remove support reactions or internal forces to define a primary structure;
- Removed reactions or internal forces are called redundants;
- Same number of redundants as degree of indeterminacy
- Primary structure must be stable and statically determinate;
- Primary structure is not unique - there are several choices.

Primary Structure

$M_{Q} \mathrm{C}_{\mathrm{y}}$

Define and Solve the Primary Problem

- Apply all loads on actual structure to the primary structure;
- Define a reference coordinate system;
- Calculate relevant deflections at points where redundants were removed.

Define and Solve the Redundant Problems

- There are the same number of redundant problems as degrees of indeterminacy;
- Define a reference coordinate system;
- Apply only one redundant to the primary structure;
- Write the redundant deflection in terms of the flexibility coefficient and the redundant for each redundant problem.
- Calculate the flexibility coefficient associated with the relevant deflections for each redundant problem;

Define and Solve the Redundant Problems

Compatibility Equations

Compatibility at Point C

$$
\Delta_{C}+\Delta_{C C}+\Delta_{C D}=0
$$

Compatibility at Point D

$$
\Delta_{D}+\Delta_{D C}+\Delta_{D D}=0
$$

Compatibility Equations in terms of Redundants and Flexibility Coefficients

$$
\begin{aligned}
& \Delta_{C}+C_{y} \delta_{C C}+D_{y} \delta_{C D}=0 \\
& \Delta_{D}+C_{y} \delta_{D C}+D_{y} \delta_{D D}=0
\end{aligned}
$$

Example Problem

Define Primary Structure and Redundant

- Remove all applied loads from the actual structure;
- Remove support reactions or internal forces to define a primary structure;
- Removed reactions or internal forces are called redundants;
- Same number of redundants as degree of indeterminacy
- Primary structure must be stable and statically determinate;
- Primary structure is not unique - there are several choices.

Primary Structure

Redundant

M_{A}

Define and Solve the Primary Problem

- Apply all loads on actual structure to the primary structure;
- Define a reference coordinate system;
- Calculate relevant deflections at points where redundants were removed.

$\theta_{A}=-\frac{P L^{2}}{16 E I}$

Define and Solve the Redundant Problem

- There are the same number of redundant problems as degrees of indeterminacy;
- Define a reference coordinate system;
- Apply only one redundant to the primary structure;
- Write the redundant deflection in terms of the flexibility coefficient and the redundant for each redundant problem.
- Calculate the flexibility coefficient associated with the relevant deflections for each redundant problem;

Compatibility Equation at Point A

Compatibility at Point A

$$
\theta_{A}+\theta_{A A}=0
$$

Compatibility Equation in terms of Redundant and Flexibility Coefficient

$$
\theta_{A}+M_{A} \alpha_{A A}=0
$$

$$
-\frac{P L^{2}}{16 E I}+M_{A}\left(-\frac{L}{3 E I}\right)=0
$$

Solve for M_{A}

$$
M_{A}=\frac{P L^{2}}{16 E I}\left(-\frac{3 E I}{L}\right)
$$

$$
M_{A}=-\frac{3}{16} P L
$$

Free Body Diagram

$$
M_{A}=-\frac{3}{16} P L
$$

Can now use equilibrium equations to find the remaining three unknowns

Find Remaining Unknowns

Can now use equilibrium equations to find the remaining three unknowns

Draw V and M Diagrams of the Beam

Superposition of Primary and Redundant Problems

