Method of Virtual Work
 Beam Deflection Example Support Movement Steven Vukazich San Jose State University

Beam Support Movement Deflection Example

The overhanging beam, from our previous example, has a fixed support at A , a roller support at C and an internal hinge at B .
$\mathrm{EI}_{\mathrm{ABC}}=2,000,000 \mathrm{k}-\mathrm{in}^{2}$ and $\mathrm{EI}_{\mathrm{CDE}}=800,000 \mathrm{k}-\mathrm{in}^{2}$
For the support movements shown, find the following:

1. The vertical deflection at point E ;
2. The slope just to the left of the internal hinge at C;
3. The slope just to the right of the internal hinge at C

Recall the General Form of the Principle of Virtual Work

General Form for Bending Deformation

$$
Q \delta_{P}+\sum R_{Q} \delta_{s}=\int_{0}^{L} M_{Q} \frac{M_{P}}{E I} d x
$$

Principle of Virtual Work for Bending Deformation

Real deformation of interest Real support movements

Virtual load

Virtual support Inter reactions for this problem

For this problem, there is only support movement causing deformation, so the internal work term is zero.

In order to find the external work due to support movement, we need to find the support reaction for the virtual system.

Virtual System to Measure the Deflection at Point E

From an equilibrium analysis, find the support reactions for the virtual system: R_{Q}

Find the Support Reactions for the Virtual System

$$
\begin{aligned}
& +\sum M_{A}=0 \rightarrow M_{A}=8 \mathrm{ft} \\
& \xrightarrow{+} \sum F_{x}=0 \longrightarrow A_{x}=0<{ }^{+} \xrightarrow{+} F_{x}=0 \rightarrow F_{B}=0 \\
& +\uparrow \sum F_{y}=0 \longrightarrow A_{y}=-0.5 \\
& +\uparrow \sum F_{y}=0 \longrightarrow V_{C}=-0.5
\end{aligned}
$$

Support Reactions for the Virtual System

Evaluate the Virtual Work Expression

$$
1 \cdot \delta_{E}+\sum R_{Q} \delta_{s}=0
$$

$$
1 \cdot \delta_{E}+M_{Q A} \theta_{Q A}+R_{Q D} \delta_{Q D}=0
$$

Need to convert $\theta_{Q A}$ to radians

$$
\theta_{Q A}=1^{\circ}\left(\frac{\pi \text { radians }}{180^{\circ}}\right)=0.017453 \text { radians }
$$

$$
\delta_{E}+(8 \mathrm{ft})(0.017453)\left(\frac{12 \mathrm{in}}{\mathrm{ft}}\right)-(1.5)(2.0 \mathrm{in})=0
$$

$$
\delta_{E}+1.6755 \text { in }-3.0 \text { in }=0
$$

Positive result, so

$$
\delta_{E}=1.325 \mathrm{in}
$$ deflection is in the same direction as the virtual unit load

$$
\delta_{E}=1.325 \text { in downward }
$$

Virtual System to measure the Rotation Just to the Left of Point C

From an equilibrium analysis, find the support reactions for the virtual system: R_{Q}

Support Reactions for the Virtual System

Evaluate the Virtual Work Expression

$$
1 \cdot \theta_{C^{-}}+\sum R_{Q} \delta_{S}=0
$$

$$
1 \cdot \theta_{C^{-}}+M_{Q A} \theta_{Q A}+R_{Q D} \delta_{Q D}=0
$$

Need to convert $\theta_{Q A}$ to radians

$$
\theta_{Q A}=1^{\circ}\left(\frac{\pi \text { radians }}{180^{\circ}}\right)=0.017453 \text { radians }
$$

$$
\theta_{C^{-}}+(1)(0.017453)=0
$$

$$
\theta_{C^{-}}=-0.017453 \mathrm{rad}=-1^{\circ}
$$

Negative result, so deflection is in the opposite direction as the virtual unit moment

$$
\theta_{C^{-}}=0.01743 \text { radians }=-1^{\circ} \text { clockwise }
$$

Evaluate Product Integrals

$$
\int_{0}^{L_{A B C}} M_{Q} M_{P} d x=\left(-338+114 \mathrm{k}-\mathrm{ft}^{2}\right)\left(\frac{12^{2} \mathrm{in}^{2}}{\mathrm{ft}^{2}}\right)=-32,256 \mathrm{k}-\mathrm{in}^{2}
$$

$$
\int_{0}^{L_{C D E}} M_{Q} M_{P} d x=0
$$

$$
1 \cdot \theta_{C^{-}}=\frac{1}{E I_{A B C}} \int_{0}^{L_{A B C}} M_{Q} M_{P} d x+\frac{1}{E I_{C D E}} \int_{0}^{L_{C D E}} M_{Q} M_{P} d x
$$

$$
\theta_{C^{-}}=\frac{-32,256 \mathrm{k}-\mathrm{in}^{2}}{2,000,000 \mathrm{k}-\mathrm{in}^{2}}+\frac{0}{800,000 \mathrm{k}-\mathrm{in}^{2}}
$$

$$
\theta_{C^{-}}=-0.0161 \mathrm{rad}+0=-0.0161 \mathrm{rad} \leftrightarrows
$$

$$
\theta_{C^{-}}=0.0161 \text { radians clockwise }
$$

Negative result, so rotation is in the opposite direction of the virtual unit moment

Virtual System to Measure the Rotation Just to the Right of Point C

From an equilibrium analysis, find the support reactions for the virtual system: R_{Q}

Find the Moment Diagram for the Virtual System

$$
\begin{array}{lll}
+\sum M_{A}=0 & \rightarrow M_{A}=-2 & +\sum M_{C}=0 \rightarrow D_{y}=-0.125 / \mathrm{ft} \\
\xrightarrow{+} \sum F_{x}=0 \rightarrow A_{x}=0 & \xrightarrow{+} \sum F_{x}=0 \rightarrow F_{B}=0 \\
+\uparrow \sum F_{y}=0 \rightarrow A_{y}=0.125 / \mathrm{ft} & +\uparrow \sum F_{y}=0 \rightarrow V_{C}=0.125 / \mathrm{ft}
\end{array}
$$

Support Reactions for the Virtual System

Evaluate the Virtual Work Expression

$$
1 \cdot \theta_{C^{+}}+\sum R_{Q} \delta_{s}=0
$$

$$
1 \cdot \theta_{C^{+}}+M_{Q A} \theta_{Q A}+R_{Q D} \delta_{Q D}=0
$$

Need to convert $\theta_{Q A}$ to radians

$$
\theta_{Q A}=1^{\circ}\left(\frac{\pi \text { radians }}{180^{\circ}}\right)=0.017453 \text { radians }
$$

$$
\theta_{C^{+}}-(2)(0.017453)+(0.125 / \mathrm{ft})(2.0 \mathrm{in})\left(\frac{\mathrm{ft}}{12 \mathrm{in}}\right)=0
$$

$$
\theta_{C^{+}}-0.034906 \mathrm{rad}+0.020833 \mathrm{rad}=0
$$

Negative result, so deflection is in the opposite direction as the virtual unit moment

$$
\theta_{C^{+}}=0.01407 \text { radians counter-clockwise }
$$

Beam Support Movement Deflection Example

