Method of Virtual Work for Beams and Frames Steven Vukazich San Jose State University Work Done by Force/Moment

θ

M

Work is done by a force acting through and in-line displacement

Work is done by a moment acting through and in-line rotation Recall the General Form of the Principle of Virtual Work

Consider a Beam Subjected To General Loading

We want to find the deflection at point A and the slope at point B due to the applied loads

Modify the General Form of the Principle of Virtual Work for Bending Deformation

Principle of Virtual Work to Measure δ_A

If the bending stiffness, *EI*, is constant:

$$Q\delta_A = \int_0^L M_Q \frac{M_P}{EI} dx$$

$$Q\,\delta_A = \frac{1}{EI} \int_0^L M_Q \,M_P \,dx$$

To Measure Rotational Deformation, Apply a Virtual Moment

Principle of Virtual Work to Measure θ_A

If the bending stiffness, *EI*, is constant:

$$Q\theta_B = \int_0^L M_Q \frac{M_P}{EI} dx$$

$$Q\theta_B = \frac{1}{EI} \int_0^L M_Q M_P dx$$

Summary of Procedure for Finding Bending Deformation Using Virtual Work

We want to find the deflection at point A and the slope at point B due to the applied loads **Step 1** – Remove all loads and apply a virtual force (or moment) to measure the deformation at the point of interest

From an equilibrium analysis, find the internal bending moment function for the virtual system: $M_Q(x)$

Step 2 – Replace all of the loads on the structure and perform the real analysis

From an equilibrium analysis, find the internal bending moment function for the real system: $M_P(x)$

Step 3 – Evaluate the virtual work product integrals and solve for the deformation of interest

$$Q\,\delta_A = \int_0^L M_Q \,\frac{M_P}{EI} \,dx$$

If the bending stiffness, EI, is constant:

$$Q\,\delta_A = \frac{1}{EI} \int_0^L M_Q \,M_P \,dx$$

Table in textbook appendix is provided to help evaluate product integrals of this type

Table to Evaluate Virtual Work Product Integrals

Appendix Table.2

Table is as useful tool to evaluate product integrals of the form:

 $M_Q M_P dx$ J_0