Virtual Work Truss Example Support Settlement Steven Vukazich San Jose State University

Example Using the Principle of Virtual Work

For all truss members use: $A = 25 \text{ cm}^2$ $E = 210 \text{ GPa} = 210 \text{ kN/mm}^2$ Consider the idealized truss structure with a pin support at A and a roller support at C.

Find the horizontal displacement of point E due to the pin support settling 9.0 cm and moving 2.0 cm to the right using the Principle of Virtual Work

Virtual System to Measure δ_{Eh}

- 1. Remove all loads from the structure;
- 2. Apply a unit, dimensionless virtual load **in-line** with the real displacement, δ_{Eh} , that we want to find;
- 3. Perform a truss analysis to find all truss member support reactions, R_Q

Find Support Reactions

Find Support Reactions

$$A_{\rm x} = -1.0$$

Virtual System Support Reactions

Use the Principle of Virtual Work to Find δ_{Eh}

Evaluate the Virtual Work Expression

$$1 \cdot \delta_{Eh} + \sum R_Q \, \delta_s = 0$$

$$A_y \text{ and } A_x \text{ are the support reactions in the virtual system}$$

$$\delta_{sv} \text{ and } \delta_{sh} \text{ are the real support movements}$$

$$1 \cdot \delta_{Eh} + A_y \delta_{sv} - A_x \delta_{sh} = 0$$
Internal work is zero for this problem
$$\delta_{sh} \text{ and } A_x \text{ are in opposite directions}$$

$$\delta_{sh} \text{ and } A_x \text{ are in opposite direction s}$$

$$\delta_{Eh} + (0.667)(9.0 \text{ cm}) - (1.0)(2.0 \text{ cm}) = 0$$

$$\delta_{Eh} + 6.0 \text{ cm} - 2.0 \text{ cm} = 0$$
Negative result, so deflection is in the opposite direction as the virtual unit load
$$\delta_{Eh} = 4.0 \text{ cm}$$
to be the left

Results for δ_{Eh}

 $\delta_{Eh} = 4.0$ cm to the left

