Virtual Work Truss Example Temperature and Fabrication Errors Steven Vukazich San Jose State University

Example Using the Principle of Virtual Work

For all truss members use: $A = 25 \text{ cm}^2$ E = 210 GPa $\alpha_i = 12 \times 10^{-6} / ^{\circ}\text{C}$ Consider the idealized truss structure from the previous example. Truss members AD and DE increase in temperature 40°C. Member CE decreases in temperature 30°C. In addition, member BE is fabricated 0.5 cm too short.

Find the vertical displacement of point B using the Principle of Virtual Work

Virtual System to Measure δ_{Bv}

- 1. Remove all loads (if any) from the structure;
- 2. Apply a unit, dimensionless virtual load **in-line** with the real displacement, δ_{Bv} , that we want to find;
- 3. Perform a truss analysis to find all truss member virtual axial forces, F_{Qi}

Find Support Reactions

 $D_y = -0.5$

Find Support Reactions

 $A_v = -0.5$

Virtual System Support Reactions

FBD of Joint A

FBD of Joint A

 $F_{QAD} = 0.625$

FBD of Joint A

 $F_{QAB} = -0.375$

Virtual System Results on a FBD of the Entire Truss

Step 2 – Use the Principle of Virtual Work to Find δ_{Bv}

Use a Table to Organize Virtual Work Calculations

Member	α×10 ⁶ (/°C)	Δ Τ (°C)	Δ_{fabr} (cm)	L (m)	F _Q	U _Q (cm)
AD	12	40	0	5	0.625	0.15
AB	12	0	0	3	- 0.375	0
BD	12	0	0	4	- 0.5	0
DE	12	40	0	3	0.375	0.054
BE	12	0	-0.5	5	- 0.625	0.3125
BC	12	0	0	3	0	0
CE	12	-30	0	4	0.5	-0.072
Total						0.4445

Sample Calculations

 $F_{QAD} \propto_{AD} \Delta T_{AD} L_{AD} = 0.625(12 \times 10^{-6} / ^{\circ}\text{C})(40^{\circ}\text{C})(5 \text{ m}) \left(\frac{100 \text{ cm}}{\text{m}}\right) = 0.15 \text{ cm}$ $F_{QBE} \Delta L_{fabrAD} = -0.625(-0.5) = 0.3125 \text{ cm}$

Results for δ_{Bv}

Positive sign indicates that deflection is in the same direction of the virtual force

$$\delta_{Bv} = 0.4445 \text{ cm upward}$$