Method of Virtual Work for Trusses Temperature Change and Fabrication Errors Steven Vukazich San Jose State University

Consider a Truss Structure Subjected To Temperature Change of Some or All Members

 A_i = Cross sectional area E_i = Modulus of Elasticity L_i = Length of truss member α_i = Coefficient of thermal expansion of truss member n_T = Total number of truss members subjected to temperature change

We want to find the deflection of joint B due to temperature changes in n_T truss members

Apply Virtual Force

Apply a virtual force **in-line** with the real displacement δ_P

 $W_Q = Q\delta_P$

Real Deformation due to Temperature Changes in Truss Members

The real temperature change causes an axial deformation of each truss member, $\Delta L_{Pi} = \alpha_i \Delta T_i L_i$

Virtual Strain Energy

Virtual strain energy developed in an individual truss member

$$U_{Qi} = F_{Qi} \cdot \Delta L_{Pi} = F_{Qi} \alpha_i \Delta T_i L_i$$

Virtual strain energy for the entire truss

Principle of Virtual Work for Truss Deflections Due to Temperature Changes

 L_i = Length of truss member α_i = Coefficient of thermal expansion of truss member n_T = Total number of truss members subjected to temperature change

$$W_Q = U_Q$$

Real Deformation

Virtual Loads

Procedure For Virtual Work Deflection Analysis

 A_i = Cross sectional area E_i = Modulus of Elasticity L_i = Length of truss member α_i = Coefficient of thermal expansion of truss member n_T = Total number of truss members subjected to temperature change

We want to find the real deflection of joint B due to the temperature change of n_T members, δ_P

- 1. Apply a unit, dimensionless virtual load **in-line** with the real displacement, δ_P , that we want to find;
- 2. Perform a truss analysis to find all truss member virtual axial forces, F_{Oi}

Step 2 – Use the Principle of Virtual Work to Find δ_P

 A_i = Cross sectional area E_i = Modulus of Elasticity L_i = Length of truss member α_i = Coefficient of thermal expansion of truss member n_T = Total number of truss members subjected to temperature change

$$1 \cdot \delta_P = \sum_{i=1}^{n_T} F_{Qi} \alpha_i \Delta T_i L_i$$

From Step 1 –virtual analysis

Consider a Truss Structure Subjected To Fabrication Errors to Some or All Members

 L_i = Length of truss member ΔL_{ifabr} = Fabrication error of truss member n_{fabr} = Total number of truss members subjected to fabrication errors

We want to find the deflection of joint B due to fabrication errors in n_{fabr} truss members

Apply Virtual Force

Apply a virtual force **in-line** with the real displacement δ_P

 $W_Q = Q\delta_P$

Real Deformation due to Temperature Changes in Truss Members

 L_i = Length of truss member ΔL_{ifabr} = Fabrication error of truss member n_{fabr} = Total number of truss members subjected to fabrication errors

The real fabrication error causes an axial deformation of each truss member, $\Delta L_{Pi} = \Delta L_{ifabr}$

Virtual Strain Energy

 L_i = Length of truss member ΔL_{ifabr} = Fabrication error of truss member n_{fabr} = Total number of truss members subjected to fabrication errors

Virtual strain energy developed in an individual truss member

$$U_{Qi} = F_{Qi} \cdot \Delta L_{Pi} = F_{Qi} \Delta L_{ifabr}$$

Virtual strain energy for the entire truss

Principle of Virtual Work for Truss Deflections Due to Fabrication Errors

 L_i = Length of truss member ΔL_{ifabr} = Fabrication error of truss member n_{fabr} = Total number of truss members subjected to fabrication errors

$$W_Q = U_Q$$

Virtual Loads

Real Deformation

Procedure For Virtual Work Deflection Analysis

We want to find the deflection of joint B due to fabrication errors in n_{fabr} truss members

- 1. Apply a unit, dimensionless virtual load **in-line** with the real displacement, δ_P , that we want to find;
- 2. Perform a truss analysis to find all truss member virtual axial forces, F_{Oi}

Step 2 – Use the Principle of Virtual Work to Find δ_P

$$1 \cdot \delta_P = \sum_{i=1}^{n_{fabr}} F_{Qi} \Delta L_{ifabr}$$

From Step 1 –virtual analysis