Virtual Work Truss Example Loads to Truss Joints

 Steven Vukazich San Jose State University
Example Using the Principle of Virtual Work

Find the vertical and the horizontal displacement of point B using the Principle of Virtual Work

Virtual System to Measure $\delta_{B v}$

1. Remove all loads from the structure;
2. Apply a unit, dimensionless virtual load in-line with the real displacement, $\delta_{B v}$, that we want to find;
3. Perform a truss analysis to find all truss member virtual axial forces, $F_{Q i}$

Find Support Reactions

Find Support Reactions

Virtual System Support Reactions

FBD of Joint A

FBD of Joint A

FBD of Joint A

$\mathrm{F}_{\mathrm{QAB}}=-0.375$

Virtual System Results on a FBD of the Entire Truss

Virtual truss member forces, $F_{Q i}$

Tension is Positive

Step 2 -Real Analysis

1. Place all of the loads on the structure;
2. Perform a truss analysis to find all truss member real axial forces, $F_{P i}$

Use Equilibrium to Find Support Reactions

Use Equilibrium to Find Support Reactions

Use Equilibrium to Find Support Reactions

FBD Showing Known Support Reactions

Show Results on FBD of Entire Truss

Step 3 - Use the Principle of Virtual Work to Find $\boldsymbol{\delta}_{B v}$

Use a Table to Organize Virtual Work Calculations

Member	$A\left(\mathrm{~cm}^{2}\right)$	$E(G P a)$	$L(m)$	F_{Q}	$F_{P}(k N)$	$U_{Q}(\mathrm{~cm})$
AD	25	210	5	0.625	-500	-0.2976
AB	25	210	3	-0.375	600	-0.1286
BD	25	210	4	-0.5	-800	0.3048
DE	25	210	3	0.375	-300	-0.06429
BE	25	210	5	-0.625	1000	-0.5952
BC	25	210	3	0	0	0
EC	25	210	4	0.5	-800	-0.3048
Total						$\mathbf{- 1 . 0 8 6}$

Sample Calculation

$$
F_{Q A D} \frac{F_{P A D} L_{A D}}{A_{A D} E_{A D}}=0.625\left[\frac{(-500 \mathrm{kN})(5 \mathrm{~m})\left(\frac{100 \mathrm{~cm}}{\mathrm{~m}}\right)}{\left(25 \mathrm{~cm}^{2}\right)\left(210 \mathrm{kN} / \mathrm{mm}^{2}\right)\left(\frac{100 \mathrm{~mm}^{2}}{\mathrm{~cm}^{2}}\right)}\right]=-0.2976 \mathrm{~cm}
$$

Results for $\boldsymbol{\delta}_{B v}$

$$
1 \cdot \delta_{B v}=\sum_{i=1}^{7} F_{Q i} \frac{F_{P i} L_{i}}{A_{i} E_{i}}=-0.1086 \mathrm{~cm}
$$

Virtual System to Measure $\delta_{B h}$

1. Remove all loads from the structure;
2. Apply a unit, dimensionless virtual load in-line with the real displacement, $\delta_{B v}$, that we want to find;
3. Perform a truss analysis to find all truss member virtual axial forces, $F_{Q i}$

Find Support Reactions

$$
\xrightarrow{+} \sum F_{x}=0
$$

$$
\mathrm{A}_{\mathrm{x}}=-1
$$

Virtual System Support Reactions

FBD of Joint A

$$
+\uparrow \sum F_{y}=0
$$

$$
\xrightarrow{+} \sum F_{x}=0
$$

Show Results on FBD of Entire Truss

Virtual truss member forces, $F_{Q i}$

Tension is Positive

Step 2 -Real Analysis

1. Place all of the loads on the structure;
2. Perform a truss analysis to find all truss member real axial forces, $F_{P i}$

Show Results on FBD of Entire Truss

Step 3 - Use the Principle of Virtual Work to Find $\boldsymbol{\delta}_{\boldsymbol{B}}$

Use a Table to Organize Virtual Work Calculations

Member	$A\left(\mathrm{~cm}^{2}\right)$	$E(G P a)$	$L(m)$	F_{Q}	$F_{P}(k N)$	$U_{Q}(\mathrm{~cm})$
AD	25	210	5	0	-500	0
AB	25	210	3	1.0	600	0.3429
BD	25	210	4	0	-800	0
DE	25	210	3	0	-300	0
BE	25	210	5	0	1000	0
BC	25	210	3	0	0	0
EC	25	210	4	0	-800	0
Total						$\mathbf{0 . 3 4 2 9}$

Sample Calculation

$$
F_{Q A B} \frac{F_{P A B} L_{A B}}{A_{A B} E_{A B}}=1.0\left[\frac{(600 \mathrm{kN})(3 \mathrm{~m})\left(\frac{100 \mathrm{~cm}}{\mathrm{~m}}\right)}{\left(25 \mathrm{~cm}^{2}\right)\left(210 \mathrm{kN} / \mathrm{mm}^{2}\right)\left(\frac{100 \mathrm{~mm}^{2}}{\mathrm{~cm}^{2}}\right)}\right]=0.3429 \mathrm{~cm}
$$

Results for $\boldsymbol{\delta}_{\boldsymbol{B}}$

$$
1 \cdot \delta_{B h}=\sum_{i=1}^{7} F_{Q i} \frac{F_{P i} L_{i}}{A_{i} E_{i}}=0.3429 \mathrm{~cm}
$$

Results for Deflection at Point B

