## Shear Force, Bending Moment, and Axial Force Diagrams for a Frame Steven Vukazich <br> San Jose State University

## General procedure for the construction of internal force diagrams

1. Find all of the external forces and draw the external force diagram;
2. Choose a sign convention for each diagram;
3. If necessary, choose a reference coordinate system:
4. Use equilibrium analysis or differential and integral relationships to construct internal force functions;

- Cut structure at appropriate sections,
- The FBD on either side of the cut may be analyzed,
- Indicate unknown internal forces consistent with the chosen sign convention,
- Plot the internal force function for each segment,

5. Check each diagram for errors;

- Check discontinuities at location of applied forces in shear diagram,
- Check discontinuities at location of applied moment in moment diagram,
- Check differential and integral relationships between distributed load, shear, and bending moment.





## Choose sign convention for internal forces for both horizontal and vertical members

## For horizontal member BDE



For vertical member ABC



## FBD of segment $A B$



Unknown internal forces assumed to act in their positive senses
$\pm) \sum M_{B}=0$

From force equilibrium

$$
\begin{aligned}
& +\sum F_{x}=0 \longrightarrow \mathrm{~V}_{\mathrm{B}-}=1 \mathrm{k} \\
& +\uparrow \sum F_{y}=0 \longrightarrow \mathrm{~F}_{\mathrm{B}-}=6 \mathrm{k}
\end{aligned}
$$

FBD of segment $A B$ showing internal forces just below B


## Plot V and M diagrams for segment AB



Plot axial force diagram for segment AB



FBD of segment BC

$\mathrm{F}_{\mathrm{B}+}$

Unknown internal forces assumed to act in their positive senses
$\pm) \sum M_{B}=0$

From force equilibrium

$$
\begin{aligned}
& +\sum F_{x}=0 \longrightarrow \mathrm{~V}_{\mathrm{B}^{+}}=1 \mathrm{k} \\
& +\uparrow \sum F_{y}=0 \longrightarrow \mathrm{~F}_{\mathrm{B}^{+}}=0
\end{aligned}
$$

$$
\mathrm{M}_{\mathrm{B}+}=-8 \mathrm{k}-\mathrm{ft}
$$

FBD of segment BC showing internal forces just above $B$


## Plot V and M diagrams for segment BC




## FBD of segment BDE

Unknown internal forces assumed to act in their positive senses

$\pm) \sum M_{B}=0$
From force equilibrium

$$
\begin{aligned}
& \xrightarrow{+} \sum F_{x}=0 \rightarrow \mathrm{~V}_{\mathrm{Br}}=-6 \mathrm{k} \\
& +\uparrow \sum F_{y}=0 \longrightarrow \mathrm{~F}_{\mathrm{Br}}=0 \\
& \mathrm{M}_{\mathrm{Br}}=18 \mathrm{k}-\mathrm{ft}
\end{aligned}
$$

## FBD of segment BDE showing

 internal forces just to the right of B

## Plot V and M diagrams for segment BDE







FBD of Joint B - Joint B is in Equilibrium


$$
\pm \sum M_{B}=0
$$

