Relationships between Shear Force, Bending Moment, and Distributed Loads
 Steven Vukazich
 San Jose State University

Consider a beam with general supports, and general loading

Look at equilibrium of a small slice of the beam

FBD of slice of beam

Sign convention

$\Rightarrow)^{+}($

Force Equilibrium

Differential Relationship between V and w

$d V$ $\frac{}{d x}=w$

Slope of tangent line to the shear diagram at a point

Value of the magnitude of the distributed load intensity at that point

Moment Equilibrium

$$
\pm \sum M_{a}=0
$$

$$
\frac{d M}{d x}=V
$$

Differential Relationship between M and V

$d M$
 $\frac{d M}{d x}=V$

Slope of tangent line to
Value of the magnitude of the the moment diagram at $=$ ordinate of the a point shear diagram at that point

Can integrate the differential relationship between w and V between two points on the beam

$$
\frac{d V}{d x}=w
$$

$$
\begin{gathered}
d V=w d x \\
\int_{A}^{B} d V=\int_{A}^{B} w d x
\end{gathered}
$$

$V_{B}-V_{A}=\int_{A}^{B} w d x=$ area under the distributed load
$V_{B}-V_{A}=\int_{A} w d x=$ between points A and B

Can integrate the differential relationship between V and M between two points on the beam

$$
\frac{d M}{d x}=V
$$

$$
d M=V d x
$$

$$
\int_{A}^{B} d M=\int_{A}^{B} V d x
$$

$$
M_{B}-M_{A}=\int_{A}^{B} V d x=\begin{aligned}
& \text { area under the shear diagram } \\
& \text { between points A and B }
\end{aligned}
$$

Consider the V and M diagrams for the beam below

Slope of tangent line to the shear diagram at a point
$=\quad$ Value of the magnitude of the distributed load intensity at that point

$$
V_{B}-V_{A}=\int_{A}^{B} w d x=\begin{aligned}
& \text { area under the distributed load } \\
& \text { between points } \mathrm{A} \text { and } \mathrm{B}
\end{aligned}
$$

Slope of tangent line to
the moment diagram at a point
Value of the magnitude of the ordinate of the shear diagram at that point

$$
M_{B}-M_{A}=\int_{A}^{B} V d x=\begin{aligned}
& \text { area under the shear diagram } \\
& \text { between points } \mathrm{A} \text { and } \mathrm{B}
\end{aligned}
$$

