Truss Analysis - Method of Sections Steven Vukazich

San Jose State University

General Procedure for the Analysis of Simple Trusses using the Method of Sections

1. Draw a Free Body Diagram (FBD) of the entire truss cut loose from its supports and find the support reactions using the equations of equilibrium (we will see that for some truss structures this step is not always necessary);
2. Make a cut through the members of the truss that are of interest. The cut must define two separate sections of the truss;
3. Draw a FBD of the section of the truss that is to be analyzed. There are three equations of equilibrium available to find unknown truss member forces;
4. Note that due to the geometry of simple trusses, several forces often intersect at a point. These points are often good points to take moment equilibrium about. Often one can isolate one unknown member force with a moment equilibrium equation.

Analysis Example Using the Method of Sections

Consider the idealized truss structure with a pin support at A and a roller support at L . The truss is subjected to applied loads shown. Find the truss member forces FH, GH, and GI

1. Draw a Free Body Diagram (FBD) of the entire truss cut loose from its supports and find the support reactions using the equations of equilibrium (we will see that for some truss structures this step is not always necessary)

Use Equilibrium to Find Support Reactions

Use Equilibrium to Find Support Reactions

$$
\begin{aligned}
& +\uparrow \sum F_{y}=0 \\
& + \\
& +\sum F_{x}=0
\end{aligned}
$$

FBD Showing Support Reactions

2. Make a cut through the members of the truss that are of interest. The cut must define two separate sections of the truss;

FBD of the Section to the Right of Cut $q-q$

Notes:

- Unknown truss member forces are assumed to act in tension (pulling away form the joint);
- Members GH and GI intersect at G;
- Members FH and GI intersect at L;
- Members GH and FH intersect at H .

3. Draw a FBD of the section of the truss that is to be analyzed. There are three equations of equilibrium available to find unknown truss member forces;

The Principle of Transmissibility

The Principle of Transmissibility states:
The condition of equilibrium (or motion) of a body remain unchanged if force F acting at a given point on a rigid body is replaced by a force F^{\prime} that has the same magnitude, line of action, and sense but acts at a different point.

Find Force in Member FH

Using the Principle of Transmissibility, slide $F_{F H}$ to point F

$$
\pm \sum M_{G}=0
$$

$$
\left(\frac{15}{17}\right) F_{F H} \leftarrow
$$

Find Force in Member FH

Note that we could also have slid $F_{F H}$ to point L
$\pm \sum M_{G}=0$

Find Force in Member GI

$$
\begin{aligned}
& \frac{8}{15}=\frac{L_{H I}}{10} \\
& L_{H I}=5.333 \mathrm{~m} \\
& ++\sum M_{H}=0
\end{aligned}
$$

Find Force in Member GH

Using the Principle of Transmissibility, slide $F_{G H}$ to point G

$$
\theta=\tan ^{-1} \frac{5.333}{5}=46.85^{\circ}
$$

$$
\sin \theta=0.72954
$$

$$
\cos \theta=0.68394
$$

$$
\pm \sum M_{L}=0
$$

FBD of the Section to the Left of Cut $q-q$

Confirm Force in Member FH

Confirm Force in Member GH

Use Force Equilibrium to Check Results

Notes:

- Show known member forces in their actual directions;
- Member GI is in tension;
- Member GH is in compression;
- Member FH is in compression.

Express the inclined member forces in terms of horizontal and vertical components, and examine force equilibrium of the section.

Use Force Equilibrium to Check Results

