Truss Analysis – Method of Sections Steven Vukazich San Jose State University

General Procedure for the Analysis of Simple Trusses using the Method of Sections

- 1. Draw a Free Body Diagram (FBD) of the **entire truss** cut loose from its supports and find the **support reactions** using the equations of equilibrium (we will see that for some truss structures this step is not always necessary);
- 2. Make a cut through the members of the truss that are of interest. The cut must define two separate sections of the truss;
- 3. Draw a FBD of the section of the truss that is to be analyzed. There are **three** equations of equilibrium available to find unknown truss member forces;
- 4. Note that due to the geometry of simple trusses, several forces often intersect at a point. These points are often good points to take moment equilibrium about.
 Often one can isolate one unknown member force with a moment equilibrium equation.

Analysis Example Using the Method of Sections

Consider the idealized truss structure with a pin support at A and a roller support at L. The truss is subjected to applied loads shown. Find the truss member forces FH, GH, and GI 1. Draw a Free Body Diagram (FBD) of the **entire truss** cut loose from its supports and find the **support reactions** using the equations of equilibrium (we will see that for some truss structures this step is not always necessary)

 $L_y = 7.5 \text{ kN}$

 $A_v = 12.5 \text{ kN}$

FBD Showing Support Reactions

2. Make a cut through the members of the truss that are of interest. The cut must define two separate sections of the truss;

Can use a FBD of either section to find unknown member forces

FBD of the Section to the Right of Cut q-q

Notes:

- Unknown truss member forces are assumed to act in tension (pulling away form the joint);
- Members GH and GI intersect at G;
- Members FH and GI intersect at L;
- Members GH and FH intersect at H.

3. Draw a FBD of the section of the truss that is to be analyzed. There are **three equations of equilibrium** available to find unknown truss member forces;

The Principle of Transmissibility

The **Principle of Transmissibility** states:

The condition of equilibrium (or motion) of a body remain unchanged if force F acting at a given point on a rigid body is replaced by a force F' that has the same magnitude, line of action, and sense but acts at a different point.

 $F_{FH} = -13.8125 \text{ kN}$

Find Force in Member FH

Note that we could also have slid F_{FH} to point L

$$\underbrace{+}{} \sum M_G = 0$$

 $F_{FH} = -13.8125 \text{ kN}$

Find Force in Member GI

 $\frac{8}{15} = \frac{L_{HI}}{10}$

 $L_{HI} = 5.333 \text{ m}$

 $F_{GI} = 13.125 \text{ kN}$

Find Force in Member GH

 $F_{GH} = -1.3707 \text{ kN}$

FBD of the Section to the Left of Cut q-q

 $F_{GI} = 13.125 \text{ kN}$

$$\underbrace{+}{} \sum M_G = 0$$

 $F_{\rm FH} = -13.8125 \ \rm kN$

$$+ \sum M_L = 0$$

 $F_{GH} = -1.3707 \text{ kN}$

Use Force Equilibrium to Check Results

Notes:

- Show known member forces in their actual directions;
- Member GI is in tension;
- Member GH is in compression;
- Member FH is in compression.

Express the inclined member forces in terms of horizontal and vertical components, and examine force equilibrium of the section.

Use Force Equilibrium to Check Results

