Analysis of a Two-Dimensional Body in Equilibrium Steven Vukazich

San Jose State University

General Procedure for the Analysis of Bodies in Static Equilibrium

- Choose the free body to isolate;
- Draw a Free Body Diagram (FBD) of the body;
- Isolate the body from all of its surroundings,
- Magnitudes and directions of all known and unknown forces acting on the body should be included and clearly indicated,
- Indicate dimensions on the FBD,
- Write the equations of equilibrium and solve the equations for the unknown quantities.

Two-Dimensional Statics Analysis Example

A light bracket is supported by a rod at point B, a pin support at point C, and subjected to point loads at points D and E as shown. Neglecting the weight of the bracket, determine:

- The axial tension in rod AB ;
- The reaction at the pin support at C .

Free-Body Diagram of the bracket

Notes

- The dimensions, the line of action of the force T_{AB}, and the applied forces are known (shown in black text);
- The reaction force at the pin support at C is unknown and expressed as two unknown components (shown in red text);
- The senses of the unknown forces are guesses at this point;
- There are 3 total unknowns and we have 3 equations of equilibrium available to solve for the unknowns.

Express vectors in terms of components and apply equations of equilibrium

Strategy

- Often (as in this problem) we can isolate one unknown with the moment equilibrium equation;
- Point B or point C would be the best choices to take moment equilibrium about in order to isolate one unknown.

Start with moment equilibrium about point C to find the tension in rod AB

Next apply the force equilibrium in the x direction to find the horizontal component of the support reaction at C

Next apply the force equilibrium in the y direction to find the vertical component of the support reaction at C

$\mathrm{C}_{\mathrm{y}}=1680 \mathrm{~N}$

Show results on a FBD of the bracket

Can also express the reaction at the pin support in terms of its magnitude and angle

$C=\sqrt{(1600)^{2}+(1680)^{2}}=\mathbf{2 3 2 0} \mathbf{N} \quad \theta=\tan ^{-1}\left(\frac{1680}{1600}\right)=\mathbf{4 6 . 4}{ }^{\circ}$

