Using Beam Influence Lines Example Steven Vukazich

San Jose State University

Example Problem

The hinged concrete beam from our previous example is subjected to a uniform dead load of $1.5 \mathrm{k} / \mathrm{ft}$ and a uniform live load of $5.5 \mathrm{k} / \mathrm{ft}$ or a point live load of 90 k . In order to design the steel reinforcement at point Q of the concrete beam, it is desired to find the following:

1. The maximum positive bending moment at point Q due to the to the uniform live load and dead load;
2. The maximum positive bending moment at point Q due to the to the point live load and dead load;
3. The maximum negative bending moment at point Q due to the uniform live live load and dead load.
4. The maximum negative bending moment at point Q due to the uniform point live load and dead load.

To place the live loads we need to construct the influence line for the bending moment at point Q . In a previous example, we constructed the M_{Q} influence line.

M_{Q} Influence Line

$$
M_{Q_{D}}=(1.5 \mathrm{k} / \mathrm{ft})\left[54.0 \mathrm{ft}^{2}-90 \mathrm{ft}^{2}+216 \mathrm{ft}^{2}-21.6 \mathrm{ft}^{2}\right]
$$

$$
M_{Q_{D}}=(1.5 \mathrm{k} / \mathrm{ft})\left[158.4 \mathrm{ft}^{2}\right]=237.6 \mathrm{k}-\mathrm{ft}
$$

$$
M_{Q \max _{L}}^{+}=(5.5 \mathrm{k} / \mathrm{ft})\left[54.0 \mathrm{ft}^{2}+216 \mathrm{ft}^{2}\right]=1485.0 \mathrm{k}-\mathrm{ft}
$$

$$
M_{Q_{D}}=237.6 \mathrm{k}-\mathrm{ft}
$$

$$
M_{Q \max }^{+}=237.6 \mathrm{k}-\mathrm{ft}+1485.0 \mathrm{k}-\mathrm{ft}=1722.6 \mathrm{k}-\mathrm{ft}
$$

Question 3

Summary of Results for $\mathrm{M}_{\mathrm{Qmax}}$

$$
P_{L}=90 \mathrm{k} \downarrow \mathbf{O R} \quad w_{L}=5.5 \mathrm{k} / \mathrm{ft}
$$

$$
\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \quad w_{D}=1.5 \mathrm{k} / \mathrm{ft}
$$

\boldsymbol{L}	$\boldsymbol{M}_{\text {Qmax }}$
$5.5 \mathrm{k} / \mathrm{ft}$	$\mathbf{1 7 2 2 . 6} \mathbf{k - f t}$
90 k	$1452.6 \mathrm{k}-\mathrm{ft}$
$5.5 \mathrm{k} / \mathrm{ft}$	$-376.2 \mathrm{k}-\mathrm{ft}$
90 k	$-\mathbf{5 7 2 . 4} \mathbf{k - f t}$

Another Example

The hinged concrete beam from our previous example is subjected to a uniform dead load of $1.5 \mathrm{k} / \mathrm{ft}$ and a uniform live load of $5.5 \mathrm{k} / \mathrm{ft}$ or a point live load of 90 k . In order to design the pin support at point A, it is desired to find the following:

1. The maximum positive vertical reaction at A due to the to the uniform live load and dead load;
2. The maximum positive vertical reaction at A due to the point live load and dead load;
3. The maximum negative vertical reaction at A due to the uniform live live load and dead load.
4. The maximum negative vertical reaction at A due to the point live load and dead load.

To place the live loads we need to construct the influence line for the vertical reaction at point A . In a previous example, we constructed the A_{y} influence line.

A y Influence Line

$$
\begin{aligned}
& A_{y_{D}}=(1.5 \mathrm{k} / \mathrm{ft})[12 \mathrm{ft}-5 \mathrm{ft}+12 \mathrm{ft}-1.2 \mathrm{ft}] \\
& \hline A_{y_{D}}=(1.5 \mathrm{k} / \mathrm{ft})[17.8 \mathrm{ft}]=26.7 \mathrm{k}
\end{aligned}
$$

Question 2

$\downarrow P_{L}=90 \mathrm{k}$
$w_{D}=1.5 \mathrm{k} / \mathrm{ft}$

Place the point live load over the maximum positive
Ay ordinate of the A_{y} influence line to find ${A_{y}}_{\text {max }}^{+}$

0

Summary of Results for $\mathrm{A}_{\mathrm{ymax}}$

$$
P_{L}=90 \mathrm{k} \downarrow \text { OR } \quad w_{L}=5.5 \mathrm{k} / \mathrm{ft}{ }_{\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow} \quad w_{D}=1.5 \mathrm{k} / \mathrm{ft}
$$

Pin Support at Point A

