Using Influence Lines Steven Vukazich
 San Jose State University

Question 1

Where should we place the 25 kN point load to produce the:

1. Maximum positive moment at point O ;
2. Maximum negative moment at point O ?

Question 2

Where should we place the $4 \mathrm{kN} / \mathrm{m}$ distributed load to produce the:

1. Maximum positive moment at point O ;
2. Maximum negative moment at point O ?

With The Influence Line for M_{O} We can Answer the Questions Easily

Influence of a Point Load

Recall that we constructed the influence line for M_{O} by placing a unit, dimensionless point load across the structure and keeping track of M_{O}.

Let;
$F=$ response quantity
(in this example, M_{O})
$2.0 \mathrm{~m} \quad \begin{aligned} & P=\text { applied point load } \\ & \text { (in this example, } 25 \mathrm{kN} \text {) }\end{aligned}$
$y=$ ordinate of influence line

$$
F=P y
$$

Influence of a Point Load

Answers to Question 1

Influence of a Uniformly Distributed Load

Influence of a Uniformly Distributed Load

Answers to Question 2

Answers to Question 2

$4 \mathrm{kN} / \mathrm{m}$

$$
M_{O}^{-}=(4 \mathrm{kN} / \mathrm{m})\left[\frac{1}{2}(10 \mathrm{~m})(-4 \mathrm{~m})\right]=-80 \mathrm{kN}-\mathrm{m}
$$

