Constructing Beam Influence Lines Using the Muller-Breslau Principle

 Steven Vukazich San Jose State University
Example Problem

A beam is pin supported at point A and roller supported at points B, D, and F . The beam contains internal hinges at points C and E .

Construct the influence line for the bending moment at point Q .

Muller-Breslau Principle to Find the Shape of the M_{O} Influence Line

1. Remove the ability of the beam to resist bending moment at point Q . This is the modified unstable structure;
2. Apply the response quantity, M_{Q}, consistent with the chosen positive sign convention;
3. The rigid body motion of the modified structure is the shape of the M_{Q} influence line.

Shape of M_{Q} Influence Line

Use Shape of Influence Line to Place Unit Load

Place Unit Load at $x=18^{-} \mathrm{ft}$ (Just to the Left of Point Q)

9 Unknowns - 9 Equations of Equilibrium

$\xrightarrow{+} \sum F_{x}=0 \longrightarrow \mathrm{~A}_{\mathrm{x}}=0$

$\mathrm{F}_{\mathrm{C}}=0$

$\mathrm{F}_{\mathrm{E}}=0$
$+\uparrow \sum F_{y}=0 \longrightarrow \mathrm{~A}_{\mathrm{y}}=0.25$
$\mathrm{V}_{\mathrm{C}}=0$
$V_{E}=0$

FBD of Segment QBC for Unit Load at $x=18^{-} \mathrm{ft}$ (Just to the Left of Point Q)

$$
\begin{aligned}
& \pm \sum M_{Q}=0 \rightarrow \mathrm{M}_{\mathrm{Q}}=4.5 \mathrm{ft} \\
& \xrightarrow{+} \sum F_{x}=0 \rightarrow \mathrm{~F}_{\mathrm{Q}}=0 \\
& +\uparrow \sum F_{y}=0 \rightarrow \mathrm{~V}_{\mathrm{Q}}=-0.75
\end{aligned}
$$

Use Shape of Influence Line to Place Unit Load

Place Unit Load at $x=36^{-} \mathrm{ft}$ (Just to the Left of Point C)

FBD of Segment QBC for Unit Load at $x=36^{-} \mathrm{ft}$ (Just to the Left of Point C)

$$
\begin{aligned}
& +\sum M_{Q}=0 \rightarrow \mathrm{M}_{\mathrm{Q}}=-9.0 \mathrm{ft} \\
& \xrightarrow{+} \sum F_{x}=0 \rightarrow \mathrm{~F}_{\mathrm{Q}}=0 \\
& +\uparrow \sum_{F_{y}=0} \rightarrow \mathrm{~V}_{\mathrm{Q}}=-0.5
\end{aligned}
$$

Use Shape of Influence Line to Place Unit Load

Place Unit Load at $x=56^{-} \mathrm{ft}$ (Just to the Left of Point E)

FBD of Segment QBC for Unit Load at $x=56^{-} \mathrm{ft}$ (Just to the Left of Point C)

$$
\begin{aligned}
& +\sum M_{Q}=0 \rightarrow \mathrm{M}_{\mathrm{Q}}=13.5 \mathrm{ft} \\
& \xrightarrow{+} \sum F_{x}=0 \rightarrow \mathrm{~F}_{\mathrm{Q}}=0 \\
& +\uparrow \sum F_{y}=0 \longrightarrow \mathrm{~V}_{\mathrm{Q}}=1.25
\end{aligned}
$$

Use Shape of Influence Line to Place Unit Load

Place Unit Load at $x=84 \mathrm{ft}($ At Point G)

FBD of Segment QBC for Unit Load at $x=84 \mathrm{ft}$ (At Point G)

$$
\begin{aligned}
& +\sum M_{Q}=0 \rightarrow \mathrm{M}_{\mathrm{Q}}=-5.4 \mathrm{ft} \\
& \xrightarrow{+} \sum F_{x}=0 \longrightarrow \mathrm{~F}_{\mathrm{Q}}=0 \\
& +\uparrow \sum F_{y}=0 \longrightarrow \mathrm{~V}_{\mathrm{Q}}=-0.3
\end{aligned}
$$

M_{Q} Influence Line

