Constructing Beam Influence Lines Using the Muller-Breslau Principle Steven Vukazich San Jose State University

Example Problem

A beam is pin supported at point A and roller supported at points B, D, and F. The beam contains internal hinges at points C and E.

Construct the influence line for the bending moment at point Q.

Muller-Breslau Principle to Find the Shape of the M_Q Influence Line

- 1. Remove the ability of the beam to resist bending moment at point Q. This is the modified unstable structure;
- 2. Apply the response quantity, M_Q , consistent with the chosen positive sign convention;
- 3. The rigid body motion of the modified structure is the shape of the M_{O} influence line.

Shape of M_Q Influence Line

Place Unit Load at $x = 18^{-}$ ft (Just to the Left of Point Q)

FBD of Segment QBC for Unit Load at $x = 18^{-}$ ft (Just to the Left of Point Q)

Place Unit Load at $x = 36^{-}$ ft (Just to the Left of Point C)

FBD of Segment QBC for Unit Load at $x = 36^{-}$ ft (Just to the Left of Point C)

Place Unit Load at $x = 56^{-}$ ft (Just to the Left of Point E)

FBD of Segment QBC for Unit Load at $x = 56^{-}$ ft (Just to the Left of Point C)

Place Unit Load at x = 84 ft (At Point G)

FBD of Segment QBC for Unit Load at x = 84 ft (At Point G)

