Constructing Beam Influence Lines for Internal Forces Steven Vukazich
 San Jose State University

Construction of Influence Lines

The overhanging beam shown has a fixed support at A, a roller support at C and an internal hinge at B . Construct influence lines for:

1. The internal shear force at point O :
2. The internal bending moment at point O .

Choose Reference Coordinate and Sign Convention

The overhanging beam shown has a fixed support at A, a roller support at C and an internal hinge at B . Construct influence lines for:

1. The internal shear force at point O :
2. The internal bending moment at point O .

Place Unit Load at $x=0$ (Point A)

Free-body Diagrams

6 Unknowns - 6 Equations of Equilibrium

$\pm M_{A}=0 \longrightarrow \mathrm{M}_{\mathrm{A}}=0$

+ $\sum M_{B}=0 \longrightarrow \mathrm{C}_{\mathrm{y}}=0$
$\xrightarrow{+} \sum F_{x}=0 \longrightarrow \mathrm{~A}_{\mathrm{x}}=0 \longrightarrow \xrightarrow{+} \sum F_{x}=0 \longrightarrow \mathrm{~F}_{\mathrm{B}}=0$
$+\uparrow \sum F_{y}=0 \longrightarrow \mathrm{~A}_{\mathrm{y}}=1$
$+\uparrow \sum F_{y}=0 \longrightarrow \mathrm{~V}_{\mathrm{B}}=0$

FBD of Segment OB for Unit Load at $x=0$

$$
\begin{aligned}
& \pm M_{O}=0 \rightarrow \mathrm{M}_{\mathrm{O}}=0 \\
& \xrightarrow{+} \sum F_{x}=0 \rightarrow \mathrm{~F}_{\mathrm{O}}=0 \\
& +\uparrow \sum F_{y}=0 \rightarrow \mathrm{~V}_{\mathrm{O}}=0
\end{aligned}
$$

Place Unit Load at $x=5^{-} \mathrm{m}$ (Just to the Left of Point O)

Free-body Diagrams
6 Unknowns - 6 Equations of Equilibrium

$\pm \sum M_{A}=0 \rightarrow M_{A}=-5 \mathrm{~m}$
$\pm \sum M_{B}=0 \longrightarrow C_{y}=0$
$\xrightarrow{+} \sum F_{x}=0 \rightarrow \mathrm{~A}_{\mathrm{x}}=0$

$\xrightarrow{+} \sum F_{x}=0 \longrightarrow F_{B}=0$
$+\uparrow \sum F_{y}=0 \longrightarrow \mathrm{~A}_{\mathrm{y}}=1$
$+\uparrow \sum F_{y}=0 \quad \longrightarrow \quad \mathrm{~V}_{\mathrm{B}}=0$

FBD of Segment OB for Unit Load at $x=5^{-} \mathrm{m}$ (Just to the Left of Point O)

$$
\begin{aligned}
& \pm \sum M_{O}=0 \rightarrow \mathrm{M}_{\mathrm{O}}=0 \\
& \xrightarrow{+} \sum F_{x}=0 \rightarrow \mathrm{~F}_{\mathrm{O}}=0 \\
& +\uparrow \sum F_{y}=0 \rightarrow \mathrm{~V}_{\mathrm{O}}=0
\end{aligned}
$$

Place Unit Load at $x=5^{+} \mathrm{m}$ (Just to the Right of Point O)

Free-body Diagrams
6 Unknowns - 6 Equations of Equilibrium

$+\sum M_{A}=0 \longrightarrow M_{\mathrm{A}}=-5 \mathrm{~m}$

+ $\sum M_{B}=0 \longrightarrow \mathrm{C}_{\mathrm{y}}=0$
$\xrightarrow{+} \sum F_{x}=0 \longrightarrow \mathrm{~A}_{\mathrm{x}}=0<\xrightarrow{+} \sum F_{x}=0 \longrightarrow \mathrm{~F}_{\mathrm{B}}=0$
$+\uparrow \sum F_{y}=0 \longrightarrow \mathrm{~A}_{\mathrm{y}}=1$
$+\uparrow \sum F_{y}=0 \longrightarrow \mathrm{~V}_{\mathrm{B}}=0$

FBD of Segment OB for Unit Load at $x=5^{+} \mathrm{m}$ (Just to the Right of Point O)

$$
\begin{aligned}
& \pm \sum M_{O}=0 \rightarrow \mathrm{M}_{\mathrm{O}}=0 \\
& \xrightarrow{+} \sum F_{x}=0 \rightarrow \mathrm{~F}_{\mathrm{O}}=0 \\
& +\uparrow \sum F_{y}=0 \rightarrow \mathrm{~V}_{\mathrm{O}}=1
\end{aligned}
$$

Place Unit Load at $x=9^{-} \mathrm{m}$

Free-body Diagrams

6 Unknowns - 6 Equations of Equilibrium

D

$$
\begin{array}{lll}
+\sum \sum M_{A}=0 & \longrightarrow \mathrm{M}_{\mathrm{A}}=-9 \mathrm{~m} & +\sum M_{B}=0 \longrightarrow \mathrm{C}_{\mathrm{y}}=0 \\
+\sum \mathrm{A}_{\mathrm{x}}=0 & \longrightarrow \mathrm{~A}_{\mathrm{y}}=1 & \\
+\sum F_{x}=0 \rightarrow \mathrm{~F}_{\mathrm{B}}=0 \\
+\uparrow \sum F_{y}=0 & \longrightarrow \uparrow \sum F_{y}=0 \rightarrow \mathrm{~V}_{\mathrm{B}}=0
\end{array}
$$

FBD of Segment OB for Unit Load at $x=9^{-} \mathrm{m}$

$$
\begin{aligned}
& \text { + } \sum M_{O}=0 \rightarrow \mathrm{M}_{\mathrm{O}}=-4 \mathrm{~m} \\
& \xrightarrow{+} \sum F_{x}=0 \rightarrow \mathrm{~F}_{\mathrm{O}}=0 \\
& +\uparrow \sum F_{y}=0 \rightarrow \mathrm{~V}_{\mathrm{O}}=1
\end{aligned}
$$

Place Unit Load at $x=12 \mathrm{~m}$

FBD of Segment OB for Unit Load at $x=12 \mathrm{~m}$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{B}}=0.5 \\
& \mathrm{~F}_{\mathrm{B}}=0
\end{aligned}
$$

$$
\begin{aligned}
& +\sum M_{o}=0 \rightarrow \mathrm{M}_{\mathrm{O}}=-2 \mathrm{~m} \\
& +\sum F_{x}=0 \rightarrow \mathrm{~F}_{\mathrm{O}}=0 \\
& +\uparrow \sum F_{y}=0 \rightarrow \mathrm{~V}_{\mathrm{O}}=0.5
\end{aligned}
$$

Place Unit Load at $x=15 \mathrm{~m}$

Free-body Diagrams

6 Unknowns - 6 Equations of Equilibrium

D

$$
\begin{aligned}
& \pm \sum M_{A}=0 \rightarrow M_{\mathrm{A}}=0 \\
& \pm \sum M_{B}=0 \longrightarrow C_{y}=1 \\
& \xrightarrow{+} \sum F_{x}=0 \rightarrow \mathrm{~A}_{\mathrm{x}}=0<\mathrm{F}_{\mathrm{B}}=0 \\
& +\uparrow \sum F_{y}=0 \quad \longrightarrow \mathrm{~A}_{\mathrm{y}}=0 \\
& +\uparrow \sum F_{y}=0 \longrightarrow V_{\mathrm{B}}=0
\end{aligned}
$$

FBD of Segment OB for Unit Load at $x=15 \mathrm{~m}$

$$
\begin{aligned}
& \pm \sum M_{O}=0 \rightarrow \mathrm{M}_{\mathrm{O}}=0 \\
& \xrightarrow{+} \sum F_{x}=0 \rightarrow \mathrm{~F}_{\mathrm{O}}=0 \\
& +\uparrow \sum F_{y}=0 \rightarrow \mathrm{~V}_{\mathrm{O}}=0
\end{aligned}
$$

Place Unit Load at $x=18 \mathrm{~m}$

Free-body Diagrams

6 Unknowns - 6 Equations of Equilibrium

\[

\]

FBD of Segment OB for Unit Load at $x=12 \mathrm{~m}$

$$
\begin{array}{cl}
\mathrm{M}_{\mathrm{O}} \\
\left.\mathrm{~F}_{\mathrm{O}} \stackrel{C}{C} \underset{\left.\mathrm{~V}_{\mathrm{O}}\right|_{4 \mathrm{~m}} ^{\mathrm{O}} \mathrm{~B}}{\sim}\right|_{0} & \mathrm{~V}_{\mathrm{B}}=-0.5 \\
\mathrm{~F}_{\mathrm{B}}=0
\end{array}
$$

$$
\begin{aligned}
& +\sum M_{O}=0 \rightarrow \mathrm{M}_{\mathrm{O}}=2 \mathrm{~m} \\
& +\sum F_{x}=0 \rightarrow \mathrm{~F}_{\mathrm{O}}=0 \\
& +\uparrow \sum F_{y}=0 \rightarrow \mathrm{~V}_{\mathrm{O}}=-0.5
\end{aligned}
$$

Plot the Influence Line for V_{O}

$\boldsymbol{x}=$	$\boldsymbol{V}_{\boldsymbol{O}}$
0	0
$5^{-} \mathrm{m}$	0
$5^{+} \mathrm{m}$	1
$9^{-} \mathrm{m}$	1
12 m	0.5
15 m	0
18 m	-0.5

Plot the Influence Line for M_{O}

