Beam Analysis by the Direct Stiffness Method Steven Vukazich San Jose State University

Stiffness Based Approach

Can think of a structure acting as a multi-dimensional spring

Beam Element Stiffness Matrix in Local Coordinates

Consider an inclined beam member with a moment of inertia I and modulus of elasticity E subjected to shear force and bending moment at its ends.

i = initial end of element j = terminal end element

x axis (local 1 axis in SAP 2000)

Each Column of the Frame Element Matrix in Local Coordinates is derived from Indeterminate Fixed End Moment Solutions

Find the First Column of the Frame Element Stiffness Matrix in Local Coordinates

set
$$\Delta_i = 1$$

and $\theta_i = \theta_i = \Delta_j = 0$

Frame Element Stiffness Matrix

 $\{\mathbf{Q}\} = [k]\{\mathbf{\delta}\}$

Structure Stiffness Matrix

Consider a beam comprised of two elements

Assemble Structure Stiffness Matrix

Assembly of Structure Stiffness Matrix from Element Contributions

Form 4x4 element stiffness matrix for element 1 from EI_1 and L_1

$$\begin{bmatrix} k \end{bmatrix}^{1} = \frac{1}{2} \frac{1}{k_{11}^{11}} \frac{1}{k_{12}^{11}} \frac{1}{k_{13}^{11}} \frac{1}{k_{14}^{11}} \frac{1}{k_{$$

Label the rows and columns of each 4x4 element stiffness matrix with corresponding structure DOF from connectivity table

Assemble 6x6 structure stiffness matrix

Form 4x4 element stiffness matrix for element 2 from EI₂ and L₂ [K]=

		1	2	3	4	5	6
	1	k_{11}^1	k_{12}^1	k_{13}^1	k_{14}^{1}	0	0
	2	k_{21}^{1}	k_{22}^{1}	k_{23}^1	k_{24}^{1}	0	0
=	3	k_{31}^1	k_{32}^1	$k_{33}^1 + k_{11}^2$	$k_{34}^1 + k_{12}^2$	k_{13}^2	k_{14}^2
	4	k_{41}^{1}	k_{42}^{1}	$k_{43}^1 + k_{21}^2$	$k_{44}^1 + k_{22}^2$	k_{23}^2	k_{24}^2
	5	0	0	k_{31}^2	k_{32}^2	k_{33}^2	k_{34}^2
	6	0	0	k_{41}^2	k_{42}^2	k_{43}^2	k_{44}^2

Structure System of Equations: Free DOF

DOF 3 are 4 are free DOF;

DOF 1, 2, 5, and 6 are restrained (support) DOF

	$\begin{bmatrix} V_1 \end{bmatrix}$	} ==	<i>K</i> ₁₁	<i>K</i> ₁₂	<i>K</i> ₁₃	<i>K</i> ₁₄	k_{15}^{L}	K_{16}		$\left[\Delta_1 \right]$	
	<i>M</i> ₂		<i>K</i> ₂₁	<i>K</i> ₂₂	<i>K</i> ₂₃	<i>K</i> ₂₄	<i>K</i> ₂₅	K ₂₆		θ_2	
	V_3		K_{31} K_{32} K_{33} K_{34} K_{35} K_{36}	K ₃₆		Δ ₃					
4	M_4		<i>K</i> ₄₁	<i>K</i> ₄₂	<i>K</i> ₄₃	<i>K</i> ₄₄	K_{45}	<i>K</i> ₄₆		θ_4	
	V_5		K_{51}	K_{52}	K_{53}	K_{54}	K_{55}	K_{56}		Δ_5	
	<i>M</i> ₆		K_{61}	<i>K</i> ₆₂	<i>K</i> ₆₃	K_{64}	K_{65}	K ₆₆		$\left[\theta_{6} \right]$	

At free DOF (blue), we know the forces (applied joint loads) but the displacements are unknown

At restrained DOF, we know the displacements but the forces (support reactions) are unknown

Free DOF System of Equations

Suppose we have loads applied to joint 2

DOF 3 are 4 are free DOF;

 M_4

At free DOF (blue), we know the forces (applied joint loads) but the displacements are unknown

At restrained DOF, we know the displacements (all equal to zero) but the forces (support reactions) are unknown

Solve for Displacements at Free DOF

Free DOF Equation Set

$$\begin{bmatrix} K_{33} & K_{34} \\ K_{43} & K_{44} \end{bmatrix} \begin{pmatrix} \Delta_3 \\ \theta_4 \end{pmatrix} = \begin{cases} V_3 \\ M_4 \end{pmatrix}$$

Solve for
$$\Delta_3$$
 and θ_4

Find Support Reactions

DOF 1, 2, 5 and 6 are restrained (support) DOF

After displacements are found, multiply to find unknown forces (support reactions)

