
1

Business Economics of Parallel Processing

 Cost per Performance vs. Performance (Time) Curve for Technology

- Exhibits 3 Distinct Regions over the lifetime of the Technology

1) Under-Utilization: Initially high C/P, but trending lower to Optimum

Technology is just introduced consisting of brand new features

New Capabilities require a “Learning Curve” by Designers

Learning incurs time and therefore, increases Cost

New features not fully utilized and therefore, decreases P

Designers should attempt to move down this curve ASAP

2) Optimum Utilization: Lowest C/P of lifecycle, trending is flat with P

“Sweet-Spot” Operating Range (“Envelope”) of the Technology

Designers cost-effectively utilize full capability of the Technology

C/P flat because P is within operating range of Technology

Evident as different “Models” of same basic design using T

3) Over-Utilization: Initially Optimum C/P, but trending higher with P

Technology is being pushed too hard, so C/P rises quickly

Designers forced to spend time (and cost) optimizing design

If higher P desired, need to “Hop” to a newer Tech Curve quickly

2

 The time has come to Hop to the New Technology Curve of Parallel Proc

- Transition may (temporarily) incur not just higher C/P, but even lower P

3

4

Implicit Hardware Parallel Processing

 Implicit Parallel Processing

- Transparent to System-Level and Application-Level SW Programmers

- Handled completely, and automatically, by built-in on-chip HW

- No Explicit External steps or specifications needed by SW Programmer

Programmer doesn’t even know “Parallelism” is being implemented

- Goal is to Provide Speedup while preserving Sequential Behavior

From a SW viewpoint, Results will be Identical to a Sequential Model

 In CS159, We study Implicit HW PP first, then Apply Ideas Explicitly in SW PP

5

 Parallel Processing vs. Sequential Processing

Sequential Algorithms are advantageous in that they have:

- Simpler Software Representations

Programs are written in a simple language and execute linearly

“Easy” to Design and Debug because of “One Thing at a Time” Model

- Simpler Hardware Realizations

Smaller number of components (1 CPU, 1 Control, 1 Memory)

Simple Interconnection Scheme and Timing Synchronization

- Simpler Temporal Behavior for Human Understanding

People get confused when too many things happen at same time

Parallel Algorithms are advantageous in that they offer:

- Speed

- Cost Effectiveness

Given a technology curve, it is cheaper to use 2 CPU’s in Parallel vs.

trying to push (over-utilize) single CPU’s performance to 2x faster

 Hardware and Software Designers Go Parallel

Not because it is easier, but because they want to go faster, cost-effectively

6

 Parallel Processing can be Viewed and Implemented at Various Levels

- Logic Level: HW is inherently “Parallel” since all gates work at same time

Serial (bit-wise Sequential) Adder is Simple, Cheap, but Slow

7

By Using a Full Adder per bit, we can attempt a Parallel Architecture
“Simultaneous” processing of several bits (e.g. 8) via parallel H/W

8-bit Ripple Carry Adder Architecture

Ripple Carry Adder actually illustrates a sub-optimal parallelism scheme

Although it uses 8x more HW (FAs) than the Serial, It is not 8x as fast

Limited by the Ripple effect of the Carry Data between FA units

Each FA (column) needs to wait for the carry from FA to its right

Data Dependency effectively creates a Sequential bit-by-bit adder

8

- Instruction Level (Microscopic and Macroscopic)

- Microscopic view:

Intra-Instruction Concurrency

A single instruction is divided into different phases or stages

Possible implementation: Pipelining

Real-Life Example: Laundry (Stage 1: Washer; Stage 2: Dryer)

Two successive loads of laundry can be ‘In Flight’ at same time

Overlap phases of consecutive instructions to Increase Throughput

1) IF: Instruction Fetch 2) ID: Instruction Decode

3) EX: Execute Instruction 4) WB: Write Back Result

9

- Macroscopic view:

Inter-Instruction Concurrency

Simultaneous execution of several instructions

The program is sequential, but many steps can be done in parallel

Assuming Data Independence between instructions run in parallel

Possible Implementation: SuperScalar Architecture

Multiple Function Units: Put both an Adder and Multiplier in HW

Now, one pair of numbers can be added, and at the same time,

another pair of numbers can be multiplied

- The two above techniques (Micro- and Macro-) can also be combined

10

- Program Level

Instruction Group Concurrency

Simultaneous execution of several processes (instruction groups)

e.g.) Several subroutines can be run at same time

Possible implementation: Multi-Processors, Multi-Computers

In CS 159, we will study two main types of Partitioning in SW PP

Data Partitioning Task Partitioning

Each PE does all needed tasks Each PE does just one specific task
on a small piece of the Data Set across all elements of entire Data Set

11

 Classification of HW Parallel Processors

Flynn’s 4 classes based on number of instructions and data handled

(1) SISD: Single Instruction, Single Data

One instruction applied to one piece of data Sequentially

Single Processor, Control Unit, and Memory

Classic Von Neumann Architecture

Internal (microscopic) parallel processing could occur with pipelining

12

13

(2) SIMD: Single Instruction, Multiple Data

The same instruction is performed on many pieces of different data

Several Processors share a common Control Unit and Memory

All processors receive same instruction but operate on different data

Processors are synchronized

e.g.) Vector computer with 100 processors can do loop in one cycle:

Do 20 I = 1, 100

 20 C(I) = A(I) + B(I)

Generally, programmer assists in the identification of parallelism:

e.g.) Above loop is coded as: C(1:100) = A(1:100) + B(1:100)

14

15

16

(3) MISD: Multiple Instruction, Single Data

Traditionally, this has been considered a Non-sensible configuration

Why do different operations on the same data at the same time?

What application would need to + - * / on the same data in parallel?

Data

But perhaps it can be used in the context of Speculative Computation

Especially in a world when massive parallelism is (freely) available

Ex: Video Game awaiting one of four possible user inputs

Could pre-compute all four alternatives on quad-core processor

Would be faster than waiting for input before computing result

17

18

(4) MIMD: Multiple Instruction, Multiple Data

Many different instructions executed on many different sets of data

Several Processors with separate Control Units

Each processor:

- Runs its own instruction sequence

- Works on a different part of the problem

- Communicates data to other processors if necessary

MIMD is the most relevant generic Arch. in the context of CS159

Multi-, Many-Core and Parallel Programming in general is MIMD

Two Classic Variants of MIMD: Shared Memory & Distributed Memory

Leads to Two Classic SW Models: Shared Mem & Message Passing

19

20

- Shared Memory MIMD

All processors have direct access to all of the memory

Advantages:

Sharing memory for data, OS System Code, etc. reduces costs

Conceptually Easier for SW Processes to Communicate

Disadvantages:

Memory Contention can be severe when running shared code

Want collective Mem bandwidth to increase linearly with P’s

However, this hard to achieve in practice

Interconnection HW between P’s and M’s scales badly as O(n**2)

Network becomes complex, costly and impractical as n grows

 Shared Memory System

21

- Distributed Memory MIMD

Each processor has its own individual memory

Advantages:

Memory Contention is reduced

HW Scaling is improved since each extra P adds its own M

Interconnection Network traffic reduced to message bursts

Disadvantages:

For data to be shared, it must be passed from P-to-P as a Message

Processor Overhead to route messages can be substantial

SW program must arrange Message Passing, Synchronization, etc.

Distributed Memory System

22

- Combination Shared & Distributed Memory MIMD

In classic binary classification of Shared vs. Distributed MIMDs:

Shared Mem MIMD HW would use Shared Mem SW API

e.g.) OpenMP: Open Multi-Processing

Distributed Mem MIMD HW would use Message Passing SW API

e.g.) MPI: Message Passing Interface

However, all MIMD Architectures have a Combination of Mem Types

Definition of “Memory” should really include L1, L2… Cache Mem

Cache is typically physically close (and private) to each P

So Delineation (and Choice of best SW API) is not always clear

Micro-(Shared or Distributed Mem?) Macro-(Shared or Distributed Mem?)

23

24

25

 We will discuss two Fast Processor Techniques:

- Pipelining: Microscopic Concurrency

Decompose the Instruction into a sequence of subprocesses

- Vector / Multiple Function Unit Processors: Macroscopic Concurrency

Have several functional units, each performing a different instruction

 Pipelining:

Key implementation technique used to make fast CPUs.

Enables multiple instructions to be overlapped in execution.

Exploits parallelism among the instructions in a sequential instruction stream

Key Advantage: Transparent to Programmer

Preserves Simplicity of Sequential Model to Software World (OS + App)

 Analogy: Assembly line

Work to be done in an instruction is broken into smaller pieces

Each piece takes a fraction of the time needed for the entire instruction

A pipeline is partitioned into stages or segments

Each stage in the pipeline completes a part of the instruction

Pipe stages are hooked together, so all stages must operate in lock-step

Time required per step of the pipeline is determined by the slowest pipe stage

26

27

28

29

 Pipeline designer's goal:

Balance the length of each of the pipeline's stages

Reduce stalls (caused by hazards)

 Throughput:

Determined by how often an instruction exits the pipeline

Number of instructions output per clock cycle

For an instruction stream consisting of N instructions:

Each instruction is divided into K equal segments (stages)

A non-pipelined machine would need: NK time steps

A pipelined machine would need:

K time steps for the first instruction (assuming pipeline was empty)

One time step for each of the remaining (N-1) instructions

Total = K + (N - 1) time steps

Speedup = NK / (K + N - 1)

Speedup from pipelining (asymptotically) equals the number of pipe stages

For N >> (K - 1), denominator approaches N

So, Speedup = NK / N = K

If stages are perfectly balanced, and no stalls occur (ideal conditions),

Throughput(pipelined) = Throughput(non-pipelined) x Num_Pipe_Stages

30

 Interesting Note:

Although pipelining increases the overall system throughput,

The total time needed by each instruction remains the same.

e.g.) For a five stage pipeline, each instruction still takes five clock cycles

On each clock cycle:

Hardware is executing some part of five different instructions

An instruction is completed and exits the pipe, and another enters

In fact, Total time needed for each instruction may actually increase !

Increase is due to the Overhead needed to control the pipeline

Latches are required b/w pipe stages, adding setup and propagation time

Latches separate the stages from each other

The increase in instruction throughput means that a program runs faster,

even though no single instruction runs faster.

31

 Pipelining can be implemented in various places in the hardware:

- Combination of techniques in various HW components is typically used

- Memory: Interleaved memory banks

Partition Memory cycle time into access + wait

Volatile Memory (e.g. RAM) needs to Refresh on a regular basis

Refresh causes a no-access period, the wait period

If no interleaving, then no access can occur during wait periods

Use (at least) a pair of Memory Banks and alternate between them

Overlap M2 access phase with M1 wait phase

- Arithmetic Logic Unit: Math operations are phased

Many alternatives are possible

e.g.) Floating Point Addition can be partitioned into the following steps:

1) Compare Exponents

2) Align Mantissas

3) Add / Subtract Mantissas

4) Normalize Result

32

- Control Unit: Instruction fetch, decode, execute

Although different partitions and granularities are possible, the

Basic Steps of Instruction Execution are:

1) Fetch Instruction (FI)

Read Program Counter and fetch instruction from memory

This is primarily a Memory Read Stage

2) Decode Instruction (DA)

Decode the bits to determine the operation and operands needed

At end of this phase, the instruction and location of its ops is known

3) Fetch Operand(s) (FO)

Read the operand(s) needed for the operation from memory

This is primarily a Memory Read Stage

4) Execute (EX)

Execute the operation and Write Back the result to memory

This stage is sometimes called WB, or is broken into two EX + WB

33

 Hazards:

Pipelining changes the relative timing between any two instructions

Some overlap in their execution; some phases should not be overlapped

Overlap introduces Hazards due to interaction between instructions that:

Prevent next instruction from executing during its designated clock cycle

Reduce the pipeline's performance from the ideal speedup possible

 - Three Types of Hazards:

1) Data hazards:

Instruction cannot be performed until operands are available.

This can arise when an instruction depends on the results of a previous

instruction in a way that is exposed by their overlapping in the pipeline

2) Control hazards:

The Next instruction to be executed is determined by the previous

Arises from the pipelining of branches and other "decision-point" instruct.

Can change the program counter from its normal “+1” increment

3) Resource hazards:

Instruction cannot be performed until resources are available

Arises when not enough of the right kind of hardware is available

Hazards can make it necessary to stall the pipeline

34

 Stalls:

Major differences b/w stalls in a pipelined machine vs. a non-pipelined one

- Non-Pipelined:

Only one instruction can be executing at any one time

An Instruction cannot be stopped mid-stream

Once started, an instruction will complete

Just freeze program counter and halt after current instruction completes

- Pipelined:

Multiple instructions are being executed (in different phases) in parallel

Several Instructions are “In-Flight” at the same time

Each is in a different phase of execution

Stall will allow some instructions to proceed to their next phase(s),

Other instructions are delayed (frozen at their current phase)

Typically, when an instruction is stalled in a Pipelined System:

Instructions earlier than it can continue

All instructions later in the pipeline than it (behind it) are also stalled

No new instructions are fetched or enter the pipeline during the stall

35

 Data Hazards:

Occur when the order of access to operands is changed by the pipeline

(vs. the normal order encountered by sequentially executing instructions)

In non-pipelined Seq. HW, only one instruct at a time is touching operands

Two instructions can create a hazard by writing and reading the same variable

- Example: Assembly code reading from and writing to Registers

 Output = INS Op1, Op2

R1 = MUL R2, R3

R4 = ADD R1, R5

R8 = SUB R6, R7

The ADD instruction has a source, R1, that is the destination of the MUL

It is possible that MUL does not write R1 until after ADD reads R1

ADD starts Operand Fetch (FO) before MUL completes Execute (EX) step

Pipeline overlap has exposed a Data “Race” Condition on R1

Unless precautions are taken, ADD will use an old value of R1

Non-deterministic behavior could also result:

e.g.) If an interrupt occurs b/w MUL and ADD, then ADD will get the new R1

36

 The most common solution to this problem is a hardware pipeline interlock

Interlock detects a hazard and stalls the pipeline until the hazard is cleared

Pipeline is stalled beginning with the instruction that wants to use the data

until the earlier sourcing instruction completes and produces it.

In above example: ADD and following instructions are stalled until MUL writes

This delay cycle (pipeline stall) creates a "bubble" in the timing diagram

 Example of Data Hazard Causing Pipeline Stall

S1: X = X + 1

S2: Z = X + Y [S2 has a data hazard on X]

S3: A = B + C

S4: J = K + L

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

S1 FI DA FO EX

S2 FI DA -- FO EX

S3 FI -- DA FO EX

S4 -- FI DA FO EX

37

 Example of Two Data Hazards Causing Two Pipeline Stalls

S1: X = X + 1

S2: Z = X + Y [S2 has a data hazard on X from S1]

S3: A = Z + B [S3 has a data hazard on Z from S2]

S4: J = K + L

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

S1 FI DA FO EX

S2 FI DA -- FO EX

S3 FI -- DA -- FO EX

S4 -- FI -- DA FO EX

 HW-based Pipelining is done “automatically” and Transparently to the SW

Extra HW is needed for Detection and Prevention (via stalls) of Data Hazards

Extra HW also needed between Pipeline Stages

 Very Long Pipelines (with a large number of stages) can be designed

Results in Large K, so Throughput is increased (multiplied by) Large K

But, Probability of a Data Hazard Increases with Number of Instrucs “In Flight”

38

 Minimizing Impact of Data Hazards

Pipeline stalls represent lost computing cycles (essentially a No-Op)

Compiler can assist by trying to schedule the pipeline to avoid these stalls

Code sequence is rearranged to eliminate (or at least reduce) the hazard

Example:

R1 = MUL R2, R3 R1 = MUL R2, R3

R4 = ADD R1, R5 Rearranged to: R8 = SUB R6, R7

R8 = SUB R6, R7 R4 = ADD R1, R5

A Smart Compiler can rearrange Instructions to Reduce Stalls from Data Hzds

But not all data dependencies can be eliminated

Typically, programmer writes to X because updated X will be read soon

And a “Smart” Complier would also be a Slow and Expensive Compiler

Compiler is essentially a sequence of embedded “Case” Statements

IF <source code> THEN <generate ASM code>

Optimizing Compiler would need to be Machine Savvy and HW Specific

Compiler writer would need to invest more time in Learning HW

Resulting Compiler may not be cost-effective and competitive

Case in Point: Itanimum-64 EPIC Very Long Instruction Word Arch.

39

 Control Hazards: Caused primarily by Conditional Branch Instructions

Can Change the Normal Contiguous, Sequential Instruction Stream Flow

Normally, Program Counter (PC) is just Incremented by 1

Location of Next Instruction is just after Current Instruction’s location

Conditional Branch causes a delay in knowing which instruction is next

Test Condition needs to complete (EX) before Result of PC is Known

Easiest (most conservative and safest) solution is a Pipeline Flush

Penalty of Control Hazard > Penalty of Data Hazard

 Example 1 of Control Hazard Using Pipeline Flush Solution (Assume X = 0)

S1: X = X + 1
S2: IF X > 10 THEN GOTO S4 [Data Hazard on S1]
S3: A = B + C [Control hazard on S2]
S4: J = K + L [Control hazard on S2]

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11

S1 FI DA FO EX

S2 FI DA -- FO EX

S3 FI -- -- -- FI DA FO EX

S4 -- -- -- FI DA FO EX

40

 Example 2 of Combined Data and Control Hazards (Assume X = 100)

Pipeline is Stalled on Data Hazard; Pipeline is Flushed on Control Hazard

S1: X = X + 1

S2: IF X > 10 THEN GOTO S4 [Data Hazard on S1]

S3: A = B + C [Control hazard on S2]

S4: J = K + L [Control hazard on S2]

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11

S1 FI DA FO EX

S2 FI DA -- FO EX

S3 FI -- -- --

S4 -- -- -- FI DA FO EX

Note: In Example 2, S3 is not executed and Flush clears the pipe for entry of S4

Conservative Flush remedy saves time in the end

In Example 1 (where X = 0), Flush of S3 requires S3 to be FI again

Flush purged the FI stage of the instruction that really would have run

Both Cases incur an expensive Pipeline Startup (reload) Penalty

41

 Minimizing Impact of Control Hazards

Jumps can be classified into three categories:

1) Unconditional

2) Conditional

3) Loop

Amount of Stalling due to Branches can be Reduced in various ways:

- Just assume the jump will not be taken and continue filling pipeline

Using this technique in Example 1 above would save the FI of S3

Requires (a delayed) pipeline flush if jump really is taken

Flush would have been “cheaper” if performed ahead of time

because the pipeline would have been stalled anyway

Also, need to undo any pre-executed effects of (wrong) instruction

Overhead can be Reduced through Buffering before “Commit”

- "Guessing" Statically (During Compile Time) which path will be taken

Attach an extra bit onto each branch instruct. that is set by compiler

Bit serves as a “hint” for the HW as to most likely branch direction

The Bit (the Prediction) is not modified during program execution

42

Stereotypical Behaviors can be identified for certain branch types

Jumps at end of Loops are a special case of conditional Jumps

Loop conditional jumps are almost always taken (Set Hint Bit = 1)

- Example:

 Loop: X(I) = Y(I)

I = I + 1

If (I < 10) GoTo Loop

Jumps to System Error Routines will almost never be taken (Bit=0)

IF A = 0 THEN GoTo Sys_Error(“Div_by_0”)

C = D / A

- Prefetching on both paths of a branch

Requires 2 pipelines in the HW for parallel execution along both paths

Complicates control structure of pipeline

Used only on highest speed, highest cost machines

Half the answers computed will eventually be discarded

Requires Buffering before “Commit” to Output Destinations

VLIW Architectures often fetch both paths speculatively

43

- Compiler (Re)-Scheduling of Instructions (Delayed Branching)

Splits conditional jump into test (IF) and action (THEN) part

Inserts useful instructions instead of no-op stalls b/w IF and THEN

These instructions would be done regardless of branch outcome

Location following a branch instruction is called a Branch Delay Slot

Instructions in the delay slots are always fetched and executed

Change in ordering should be SW Transparent

Needs to be Independent of Data and of the Branch is taken

- Example:

X = Y + Z IF B < C

IF B < C X = Y + Z

THEN A = B + C THEN A = B + C

 Performance of Different Control Branch Handling Schemes

Assume a 5 stage pipeline with maximum speedup of 5X if no Stalls

Scheduling Scheme Pipelined Speedup over Non-Pipelined

Stall Pipeline 3.5
Predict Taken/Not Taken 4.4
Compiler rescheduling 4.6

44

 Limitations of Pipelining

Pipeline speedup potential is limited by the number of pipeline stages (K)

Throughput(pipelined) = Throughput(non-pipelined) x Num_Pipe_Stages

Number of stages is limited by the total number of separate “functions” into

which the instruction can be decomposed into (typically 4-8).

In Extreme Limiting Case (K>>), Latch Overhead > Work Done per Stage

Pipeline speedup potential is also limited by Instruction Stride

Stride is an unbroken consecutive string of instructions through pipeline

Once stride is broken (e.g. by a branch flush), pipeline needs to reload

Pipeline startup penalty is higher for smaller N and larger K

If only a small number of instrucs are processed consecutively, N is small

So, cannot assume N >> (K - 1) and that Speedup = NK / (K + N -1) = K

For example, for N = 5 instructions, and a K = 8 stage pipeline:

Speedup = (5) (8) / 12 = 3.3 which is significantly < 8

Probability for long consecutive strings highest in matrix math computations

In Worst Case Scenario of High Latch Overhead (K>>) and Poor Stride,

Pipelining can result in a net overall Performance Degradation

45

46

 Macroscopic Instruction Parallelism

Utilize Parallel HW to Process several (whole) instructions in Parallel

Not just overlapped in phases as in Pipelining

Can actually change the order of instructs relative to how they appear in prog.

Successive Instructions in Code actually execute in Parallel at same time

In Pipelining, later instruction is still “later” in order of HW execution

Pipelining preserves ordering, even if just by one stage later

In Aggressive Form, Later instruction might even go before an Earlier one

More complicated than Pipelining (Microscopic Instruction Parallelism)

Requires the use of Multiple Function Units in HW

At any one time, many instructions may be in their execute stage

Instructions are not just Phased as in pipelining, but run in Parallel

Requires Resource Hazard Analysis

Need to Check if Proper Function Unit is available for Parallel execution

Requires more comprehensive Data Dependency analysis

In Aggressive Instruction Re-ordering, more Data Hazards are possible

More Variations (Types) of Data Hazards can arise

Data Hazard analysis in pipelining is simpler (Instructs only Overlapped)

Can be combined with Pipelining (Each Function Unit itself is Pipelined)

47

48

 Concurrent Execution of Sequential Algorithms:

Procedural SW Programming Languages inject an "apparent" Sequentiality

One instruction must "apparently" be completed before next is started

This "apparent" Seq. SW view leaves room for some hidden concurrency

Goal: Obtain faster execution while retaining simplicity of sequential rep.

Approach: Remove any unnecessary sequentiality from the SW program

A Sequential Algorithm has:

- Inherent Sequentiality
An ordering of operations which are an implicit part of the algorithm
These must be preserved as a fundamental part of the SW program
Changing the order of these instructions will alter what was intended

- Artificial Sequentiality
Injected by the semantics of the SW specification of an algorithm
Most languages do not enable programmer to specify concurrency
Temporary variables contribute to sequential step appearance

By Eliminating Artificial Sequentialities, Execution can be Accelerated

Continues to preserve the required dependencies for correct behavior

Maintains "apparent" sequentiality while transparently using parallelism

Identifying inherent sequentiality requires more detailed hazard analysis

49

- Separating Inherent Sequentiality from Artificial Sequentiality

Example using a Data Dependency Flow Graph

T1 = A + B
T2 = C + D
X = T1 * T2
T1 = E * F
Y = T1 + G

A B C D

X

E F G

Y

+ +

+*

*

Five Time Steps Two Time Steps

Assembly Language Representation appears to require 5 time steps

However, Data Flow Analysis reveals 2 Independent Computational Flows

(A, B, C, D) to compute X, and (E, F, G) to compute Y

The Two Computational Flows can occur in Parallel if HW resources avail.

Also, operations within each flow can occur in parallel if HW is available

If Inherent Sequentiality is preserved, parallel result is same as seq. result

50

 Multi-Function Units

Augment HW w/ multiple Function Units to enable parallel proc. of instructs

Need to Check if proper type of Function Unit is available at certain time

Requires resource hazard analysis

Keep parallel processing transparent to programmer

Remove artificial sequentiality whenever possible, but not inherent seq.

Requires data hazard analysis to differentiate artificial vs. inherent seq.

If Resource is available and no data hazards exist, then Control Unit can:

Issue and begin executing a later instruction at same time, or

In aggressive case even before an earlier one is started (out of order)

Control unit does "lookahead" to identify instructions to process in parallel

Look-Ahead Control unit needs to perform:

- Detection: Determine which instructions can be executed in parallel

This analysis is based only on SW; it is HW Machine Independent

- Scheduling: Assigns concurrently executable instructions to FUs

This analysis is HW Dependent

Must Know Specific Number and Type of FUs on Target Machine

Look-Ahead must occur quickly; otherwise, no gain in speedup occurs

Time to Detect and Schedule Should be << Time to Execute on FUs

51

Typically, Look-Ahead Control Unit HW is Complicated and Expensive

Amount of HW and its complexity for CU can exceed the HW for FUs

This is a technical justification for “extreme” RISC, VLIW and EPIC

Off-load Look-Ahead Control and Parallelism to SW Compilers

But effective compilers could not be written, so this approach and

EPIC VLIW HW have not (yet) been successful business models

 Degree: The number of instructions scanned ahead of the current instruction

Multiple degrees of "lookahead" are possible

We assume a (simple) single instruction lookahead issuing scheme:

Control unit issues consecutive instructions until a hazard is detected.

At that point, all issuing stops until the blocked statement can execute.

Higher degrees enable more potential speedup but are more complicated

e.g.) Using a double instruction (2nd degree of) lookahead,

If scanned instruction has a hazard, “skip” over it and continue

scanning until the second instruction with a hazard is detected.

Using a Lookahead Degree > 1 can create Out-of-Order Execution

Consider two consecutive instructions: i followed by j

In single lookahead (our examples), j will never go before i

In higher degree of lookahead, j could be issued and complete before i

52

 An Instruction can be issued if:

1) No data dependency is detected on any instruction currently executing.

AND

2) The appropriate type of resource (function unit) is available.

- Example:

High-Level Language Source Compiler Generated Reg Transfer Code
A = (B + C) * (D + E) S1: R1 = B + C
F = G + H + I + J S2: R2 = D + E
H = K * L S3: A = R1 * R2

S4: R3 = G + H
S5: R4 = I + J
S6: F = R3 + R4
S7: H = K * L

- CASE 1: One adder and one multiplier unit available.

Time 1 2 3 4 5

Adder R1 = B+C R2 = D+E R3 = G+H R4 = I+J F = R3+R4

Multiplier A = R1*R2 H = K*L

Hazard: S2:adder S3:R2 S5:adder S6:R4,adder

53

- Example: (same code as previous Case 1, but increase number of FUnits)

High-Level Language Source Compiler Generated Reg Transfer Code

A = (B + C) * (D + E) S1: R1 = B + C

F = G + H + I + J S2: R2 = D + E

H = K * L S3: A = R1 * R2

S4: R3 = G + H

S5: R4 = I + J

S6: F = R3 + R4

S7: H = K * L

- CASE 2: Two adders and one multiplier unit available

Time 1 2 3 4 5

Adder 1 R1 = B+C R3 = G+H F = R3+R4

Adder 2 R2 = D+E R4 = I+J

Multiplier A = R1*R2 H = K*L

Hazard: S3: R1, R2 S6: R3, R4

Speedup Results: Case 1: Finished in 5 time steps vs. 7 time steps
Case 2: Finished in 3 time steps vs. 7 time steps

54

 Multi-Function Unit approach has yielded “reasonable” speedups in the past

“Reasonably” cost-effective from a HW point of view

e.g.) Cost of second adder is (almost) a “copy and paste” procedure

Simple Degree of Lookahead, and simple CU can yield good speed gains

 However: There are practical limits to "Transparent" ILP Parallel Processing

Decreasing marginal rates of return occur as more FUnits are added

Inherent sequentiality of source code algorithm is the ultimate bottleneck

High degree of lookahead needed to utilize large number of functional units

Need to continue issuing later instructions even if earlier one is blocked

Don’t want to hold up Instruct(j) because Instruc(i)’s FUnit is busy

Instruc(j)’s Type of Function Unit may be available

One method that allows this is Virtual Functional Units

Prevents blockage of instruction scanning due to a busy FU

Each FUnit is augmented with a queue of Virtual Functional Units

Instruc(i) will be dispatched assuming:

1) A physical Function Unit or a Virtual Function Unit is available

2) There are no data dependency hazards

VFUs will not necessarily allow Instruc(i) to be completed earlier

Execution of Instruc(i) will still eventually require a physical FU

55

 The figure above shows that incremental performance increases from

more aggressive ILP are arguably not worth the additional transistors,

die size, and power utilization costs required in the Hardware.

56

 Data Hazard Classifications are Named by the ordering of Reads & Writes

Consider two Instructions: Statement S1 followed by S2 (S2 occurs After S1)

Analysis of “overlaps” between the Reads and Writes of S1 and S2 is needed

Writes on the Left Hand Side (LHS) of Equal Sign against Reads on RHS

Three types of Data Hazards are possible: RAW, WAR, WAW

S2 is said to “Depend” on S1 if any one of the three data hazards exist

“Depend” implies that S1 and S2 must be executed in sequential order

Their order cannot be changed (S2 cannot be executed before S1)

Nor can S2 be executed in parallel with S1 (cannot use MFU ILP)

1) RAW (Read After Write):

True, Data Flow Dependency

RAW is the most common type of hazard that occurs

Example: S2 reading a source (R1) that S1 writes to

S1: R1 = R2 + R3
S2: R4 = R1 + R6

Example : S3 depends on S2, and S2 depends on S1, so no ILP possible

S1: R1 = 99
S2: R2 = R1
S3: R3 = R2

57

2) WAR (Write After Read):

Anti-Dependency: Mirror Image of RAW True Data Flow dependence

S2 writes to a target that also serves as a read source of S1

If S2 writes a target before it is read by S1, S1 gets (wrong) newer value

Example of WAR: S2 writes a target (R1) that S1 reads from

S1: R4 = R1 + R6
S2: R1 = R2 + R3

WARs can be Avoided by Buffering Source Operands (Register Renaming)

In above example, store value of R1 in a Buffer (R9) prior to S1 and S2

When S1 executes, it reads the Buffered value of R1 inside of R9

Therefore, results will still be correct even if S2 completes before S1

Example of Using Register Renaming to Solve WAR of above:
S0: R9 = R1
S1: R4 = R9 + R6
S2: R1 = R2 + R3

Another Example of Using Register Renaming to Avoid WAR:
B = 3

B = 3 Renamed to: Z = B
A = B + 1 A = Z + 1
B = 7 B = 7

58

3) WAW (Write After Write):

Output Dependency

S1 and S2 write to the same target

With aggressive ILP, S1 and S2 may update target at same time

A situation similar to a “Race” Condition can occur

Final Value of the Target is a function of who (S1 or S2) “wins” the Race

If the order of the instructions is changed,

Then the writes could end up being performed in the wrong order,

causing a change in the final output value of a (any) variable,

because the value written by S1 rather than S2 is left in target

Example: S1: A = 3 + X
Sn: B = A / 4
S2: A = 5 * Y

Common target between S1 and S2 is the variable A

Changing the order of S1 and S2 will change final value of B

Buffering (Variable/Register Renaming) can be used to alleviate WAW

Example: S1: A2 = 3 + X
Sn: B = A2 / 4
S2: A = 5 * Y

59

 If only Single Instruction (Degree 1) Lookahead is used,

Then only the first type of Data Hazard (RAW) needs to be detected

 WAR & WAW type of hazards only a potential problem for Lookahead > 1

i.e. An Instruct. is allowed to proceed even when a previous one is stalled

Significantly complicates the amount (cost) of hazard analysis required

Speedup (performance) improvement is typically small

 Majority of ILP Speedup is achieved with simple RAW Single Level Lookahead

This was our approach in CS159

Relatively simple to maintain dependence while avoiding RAW hazard

Preserves In-Order Execution of Instructions

 Consider a boat with seats, each seat representing a FU of a MFUnit machine

Each boat represents one timeslot of parallel execution of all the MFUs

 In-Order Instruct. Processor Dispatching Algorithm: Stall on 1st RAW conflict

1. Fetch Instruction from front of line

2. If that particular type of seat is unavailable, Resource Hazard, GoTo 4

3. Check for RAW Hazard against any other Instructions already seated
If RAW detected, GoTo 4; Else Instruct. takes seat on boat, GoTo 1

4. Dispatch boat (all instructions on that boat execute in parallel on MFUs)

5. Pull Next fresh boat (timeslot) up to dock and GoTo 1

60

 If a more aggressive ILP Lookahead paradigm is used, then:

Operand Buffering (Register Renaming) for WARs and WAWs is needed

Overhead at Receiving dock is needed in addition to loading dock dispatch

 Out-of-Order Processor Dispatching Scheme (Loading Dock side):

Instructions Line up in a queue to board boat

Instruction Waits until its input operands are available (no RAW Hazard)

Once input operands are available, instruction is allowed to board

even though earlier, older Ins may still be waiting in line in front of it

That is, dispatcher can “skip” over blocked Instructions in an effort to

get other (later) instructions “on board” to fully pack the boat

Boat is dispatched when:

It is full (all FU seats are taken), or (in a more real-life scenario, when

Dispatcher reaches his/her lookahead “limit” over skipped passengers)

 Out-of-Order (OoO) Processor Retirement Scheme (Receiving Dock side):

The Instructions / Passengers / Results arrive OoO and are queued

A particular Instruction’s result is written back (graduated or retired)
only after all earlier, older instructions arrive and
have had their results written back.

That is, the arriving passengers / results need to be put back in order.

61

 Dispatch Algorithm must work much faster than a Function Unit execute time

 Most effective with help of Compiler (higher level reordering at source code)

 Example VLIW (Very Long Instruction Word) Architectures

An alternative architecture for exploiting Instruction-Level Parallelism

VLIW Architectures are characterized by:

- A Processor that contains a large number of Function Units

- A Long Instruction Word with a group of different fields, one for each FU

e.g.) A group of Four Fields for Four Function Units

- All (say, 4) sub-Instructions packed together in a single VLIW Instruction

are pre-grouped together for Independent, Parallel Execution

- Entire group of instructions is dispatched to the FUs in parallel

Exploiting the Full Capability of a VLIW CPU is the Compiler's Responsibility

Compiler Must:

Be intelligent enough to decide how to build the very long words

Assemble many primitive operations into a single “instruction word”

Group together independent instructions executable in parallel

Guarantee no dependencies b/w instructions that issue at same time

Keep as many of the FUs busy by filling all the available operation slots

Ensure that there are no resource hazards in the specific HW

62

 VLIW Static Scheduling vs. The SuperScalar Dynamic Scheduling

SuperScalar processors perform dynamic scheduling/reordering in HW

Since the ILP is handled by the H/W, it is much more complex

Thus, Modern CPUs have developed very complicated hardware units for:

1) Rearranging Instructions at run time for effective OoO Execution

2) Performing Branch Prediction

The VLIW Architecture overcomes the two above complications by:

1) Having compiler pack several RISC instructions into one long word

Processor can then take unpack operations without further analysis

Processor simply gives each operation to an appropriate FU

These instructions are already certified to be executable in parallel

Processor H/W does not need to have the ability to detect and

schedule the parallel operations in Real Time.

2) Eliminates Branch Prediction by executing all branch outcomes

After true outcome of branch is known, invalid results are discarded

In VLIW, the Hazard Analysis for ILP is handled completely by compiler

No dynamic scheduling nor reordering of Instructs is performed in H/W

The VLIW control logic has less responsibility, and is therefore simpler

Hardware can be smaller, cheaper, and require less power to operate

63

 Example of a VLIW Architecture: The IA-64 (Itanium)

IA-64 had many advanced ideas in Computer Architecture Technology,

But Compilers were not able to utilize its architecture effectively,

So it was unsuccessful in the business market (nick named the “Itanic”)

 Data (and Control) Hazard Reduction is Hard to do in either HW or SW !

 Big-Picture Goal of this Discussion: Contrast Program Order vs. Data Order

The order in which program source code appears is only part of the story

The order in which data flows is the other, sometimes more important part

64

 Two Types of RAM Memory Terminology

1) Static: More complex, more expensive, faster (7ns) design used for cache

Active Flip Flop gates require several transistors

2) Dynamic: Simpler, cheaper, slower (70ns) used for Main Memory “RAM”

Passive Capacitor Design is simpler and denser, therefore cheaper

- We discuss issues with #2: Dynamic Main Memory (Stick on MOBO) “RAM”

65

- Dynamic Storage: Uses continuous recirculation of some physical quantity

- Volatile Storage: Loses the stored information with time or power-off

e.g.) Capacitive memory cell requires power to refresh its charge

- Destructive Read-Out: Process of reading information effectively destroys it

Data then needs to be restored or effectively written back

e.g.) Capacitive memory cell gets discharged when it is read

- Because of RAM’s Dynamic, Volatile and Destructive Read characteristics,

a Wait period is needed by the Memory Controller to Refresh each cell

- Three Time Periods:

1) Access Time: The interval b/w arrival of the signal activating memory

and the completion of write-in or read-out

2) Waiting Time: The "resting period" or the time the storage device needs

to settle sufficiently before the next reference to it can be performed

RAM memory is effectively off-duty and busy refreshing itself

3) Cycle Time = Access Time + Waiting Time

The speed with which consecutive accesses can occur

The minimum time between successive R/Ws to that Memory Bank

66

 Good memory management reduces the perceived impact of RAM Wait times

 Memory Interleaving: Divide memory into a number of separate banks

Goal: Avoid CPU idle during Wait (restore/refresh) period of mem cycle time

Various degrees (“ways”) of interleaving architectures are possible

e.g.) If memory is four-way interleaved, four separate memory banks exist

Each contains one-quarter of the total words in memory

Consecutive elements are interleaved between the four banks

It is common to divide the words in the banks using a modulo function

e.g.) If 4-way interleaving is used, words 1, 5, 9... will be in bank one

Assume the CPU can overlap requests between banks (typically so)

Thus, while an access (fetch) or wait (restore) is in progress for one bank,

another different bank may be accessed

That is, Memory Banks can work in Parallel

Mainly useful for words in a straight-line program segment (i.e. instructions)

Operands (data) normally results in out-of-sequence requests to memory

In this way, it is possible to access consecutive words of memory rapidly

Can effectively hide the Dynamic RAM Memory Wait Times from the CPU

Average effective speed of memory can be increased effectively

67

 Consider a memory consisting of k modules

If all k modules are kept busy continuously,

Then effective cycle time can be decreased by up to a factor of k

Actual speedup varies depending upon the SW access pattern to memory

In our examples, we assume Access Time = Wait Time

Cycle Time = Access Time + Wait Time

Implementation:

A module is selected by the low-order (log2 k) bits of the MM address

The high-order bits determine the location within that module

 Example: Various Degrees of Interleaving for consecutive elements A, B, C, D

M1 M1 M2 M1 M2 M3 M4
A A B A B C D

B C D

C

D

Non-Interleaved 2-Way Interleaved 4-Way Interleaved

68

 Example: Assume that Memory has a 0.6 Access Time and 1.2 Cycle Time.

The CPU takes 0.2 to prepare a memory request and 0.2 to process the result

CPU can either prepare a memory request or process a result in parallel with

the memory. The CPU can issue a request for an operand (e.g. B) before

actually receiving and processing a previously requested operand (e.g. A).

The total time needed by the overall system to perform an operation spans

the time between the CPU's preparation of the very first memory request to

the time when the CPU completes processing of the last memory request.

Four operands, A thru D are to be retrieved from memory and processed.

Non-Interleaved:

CPU Prepare

Memory

CPU Handle

A

A

A

B

B

B

C

C

C

D

D

D

Total Time = 4.6 CPU Utilization = 8 / 23 = 34%

69

Two-Way Interleaved:

CPU Prepare

Memory 1

CPU Handle

A

B

C

DMemory 2

A B C D

A B C D

Total Time = 2.4 CPU Utilization = 8 / 12 = 66% Speedup = 4.6 / 2.4 = 1.9

Four-Way Interleaved:

CPU Prepare

Memory 1

CPU Handle

A

B

C

D

Memory 2

A B C D

A B C D

Memory 3

Memory 4

Total Time = 1.6 CPU Utilization = 8 / 8 = 100% Speedup = 4.6 / 1.6 = 2.8

70

 Interleaved memory makes contiguous block transfers very efficient

So, transferring blocks from the MM to the cache can be done quite fast

 Interleaved Memory for Data Elements (Instead of Instruction Elements)

Interleaved memory works best with consecutive addresses (e.g. instructions)

But, optimization can also be performed for data accesses (e.g. matrices)

Best arrangement varies with dimensions of matrix; we look at an example.

Typical Matrix operations involve access to rows, columns, and diagonals

Arrangement 1: "Straight" Storage Scheme across 4 Memory Modules

M1 M2 M3 M4
A(00) A(01) A(02) A(03)

A(10) A(11) A(12) A(13)

A(20) A(21) A(22) A(23)

A(30) A(31) A(32) A(33)

Allows access to Consecutive elements of Rows & Diagonals without conflict

Conflict on Columns

Example: A(y2) are all be read from M3 while M1, M2, and M4 are all idle

71

Arrangement 2: "Skewed" Storage Scheme - Barrel shift each row by one

Row 0: No Shift; Row 1: Shift Right One; Row 2: Shift Right Two

M1 M2 M3 M4
A(00) A(01) A(02) A(03)

A(13) A(10) A(11) A(12)

A(22) A(23) A(20) A(21)

A(31) A(32) A(33) A(30)

Allows access to Rows and Columns without conflict.

(Minor) Conflict on Diagonals; Degree of Interleaving is 2 (instead of 4)

Arrangement 3: "Two's Skewing" Storage - Barrel shift each row by two

Insert an extra module; Skip one module per row (wasteful of memory cells)

M1 M2 M3 M4 M5
A(00) A(01) A(02) A(03) --

A(13) -- A(10) A(11) A(12)

A(21) A(22) A(23) -- A(20)

-- A(30) A(31) A(32) A(33)

Allows access to Rows, Columns, and Diagonals without conflict (4-way)

72

 SW Programmer needs to be aware of HW Memory Access Patterns

DRAM, Cache, Register Files all have different bandwidths and latencies
Each level of the Memory Hierarchy can represent a 10X performance delta

73

74

 Row-Major vs. Column-Major Memory Storage Patterns for Matrices

Single Dimension Arrays are stored in contiguous locations in memory
So A[1] is followed by A[2], then A[3], etc.

Multi-Dimensional Arrays (Matrices) can be either Row- or Column-Major
Row-Major:

Consecutive Mem Locations differ by 1 in the last subscript of Matrix
So M[2, 4] is followed by M[2, 5]

Column-Major:
Consecutive Mem Locations differ by 1 in the first subscript of Matrix

So M[2, 4] is followed by M[3, 4]

 Difference can be Important when using nested loops to access all elements
of a multi-dimensional Matrix – something that is very commonly done.

 Speed of loop is memory bound and dependent on cache hit rate

 Demo: Which Loop Nesting is Better, or does it even matter ?

for (i=0; i<1000; i++){ for (j=0; j<1000; j++){

for (j=0; j<1000; j++){ for (i=0; i<1000; i++){

M[i][j] = 0 ; M[i][j] = 0 ;

} }

} }

75

 Yes ….. it matters …… sometimes …… and as far as which one is better …… it depends

 It depends on the Size of the Matrix and the Programming Language Used.

 For Small Matrices, all of the elements will fit completely in cache throughout the loops

 So orientation of cache lines will not matter

Both loop nestings will perform the same

 SW Programmer should be aware of the particular machine’s HW cache size

 For Large Matrices, cache lines accessed early in the traversal will be

evicted to make room for lines accessed later in the traversal.

 If matrix elements are accessed in order of consecutive addresses, then

o Each miss will bring into the cache a line consisting not only of the desired

element (the one that missed), but the next several elements as well.

o Spatial locality of reference will effectively be leveraged to predict next needed

elements, and therefore, will boost the cache hit rate and performance of SW.

 If matrix elements are accessed across cache lines instead (the wrong way), then

o Spatial locality of reference will be lost because no pre-fetching occurs.

o Practically every access will be a cache miss dramatically reducing performance

 It Depends on the Language used too:

Best for C for i Best for Fortran for j

Row-Major for j Column-Major for i

M[i][j] M[i][j]

76

 Introduction to Scheduling: Process States

A Process moves through various states between being submitted and completed:

1) Hold State: A user's job has been Submitted and Spooled onto disk.
Process has simply been "read" into the system's high-speed storage area.
There can be many processes (from many users) queued in the Hold State.

2) Ready: Process is "ready to run", but must wait for its turn on the processor.
The resources (e.g. memory) it needs are available & can be allocated to it.
Process must wait for the Scheduler to give it time on the CPU.
There can be many processes in the Ready Queue waiting for the CPU.

3) Run: Process is currently being executed.
Process has been allocated the CPU and is actively running.
On a uniprocessor, only one process at a time can be in the Run state.
Process continues to possess the CPU and run until it either:

- Is interrupted by the Scheduler (because its time slice is up), or
- It performs I/O, thereby (voluntarily) moving itself to the Wait State.

4) Wait: Process is waiting for some event to happen (e.g. I/O operation).
Process gives up CPU while waiting for a slower device to complete its request.
Also called the Blocked State (i.e., process blocks itself by doing I/O).
After I/O is complete, process returns to Ready Queue.
There can be several processes waiting for I/O to complete for them.

5) Complete: Process has finished and all of its resources are now deallocated.

77

Submit Hold

Run

Ready Wait

Complete

user

user
Scheduler

 The life cycle of a process can be represented by transitions between these states.

 The Ready-Run-Wait Triad is the most significant portion of a Job’s Life Cycle

A Process will typically cycle many times through the Ready-Run-Wait States.

 Note the following two Opportunities for Global System Optimization

1) Avoiding (unnecessary) Transitions to the Wait State with Small Incremental I/O

 - Input/Output Buffering by the Operating System

When a Process does I/O while Running, it is moved to Wait State due to slow I/O

Substantial Overhead can be incurred with numerous small-sized I/O’s

Operating System’s Goal is to Maximize Performance of Individual Jobs & System

Minimizing one Job’s swap to Wait States will also maximize overall System

OS buffers numerous small-sized incremental I/O’s into fewer large-sized I/O’s

Under certain circumstances, OS can buffer I/O with no apparent effect on outcome

e.g.) If Output not read by user until entire program completes

78

2) Minimizing the Run-Time Penalty and Overhead of State Transitions

HyperThreading: Intel Technique to Accelerate Context Switching via extra HW

Significant SW (run-time) overhead is spent Swapping Processes In & Out of Run

Complete Architectural State of Process needs to be stored upon swap out,

then retrieved and loaded on a context switch swap in.

Architectural State includes the Program Counter and Register Values

HyperThreading Duplicates the Registers that store a thread’s Architectural State

One Physical Processor appears to be Two Logical Processors to the OS SW

OS SW can effectively keep 2 threads (2 AStates) “alive” at the same time

However, execution resources are not duplicated as in a true multi-processor

HT enables switching between threads to be accomplished at fast(er) HW speed

So only one Thread actually runs at any instant in time (not true parallelism)

79

 HyperThreading Yields a Cost- Effective Performance Boost

- About 5% extra HW Register Support has been shown to give about a 15% speedup

 HyperThreading is, for the most part, Transparent to OS SW and Application-level SW

- However, to benefit from HyperThreading, Application SW should be multi-threaded

To obtain peak performance, the number of active threads should be equal to

the number of logical processors in the system.

- OS can also maximize perf gains by knowing difference b/w logical vs. physical Procs

For example, assume a dual-core chip, where each core (P1, P2) is HyperThreaded

So OS now sees four logical processors (L1 & L2 from P1; L3 & L4 from P2)

If only two threads (T1 and T2) need to be run,

Mapping T1 to L1, and T2 to L2 will yield poor results because both are on P1

T1 and T2 would now need to share the single set of resources on P1

P2, the other real physical core with another set of resources, is unused

Better OS mapping would run T1 on L1 (or L2), and T2 on L3 (or L4) to better

balance the workload among the real physical processors, P1 and P2.

 HT was first introduced on the Intel Xeon processor in early 2002 for the server market

Then later in the same year on high-end (3Ghz+) Intel Pentium 4 for consumer market.

 Intel estimates that HT will be used in about 75 percent of its chips

Key point: Although OS sees 2 logical procs, HT performance is not 2X better; only 15%

