
CS 159
Two Lecture Introduction

Parallel Processing:

A Hardware Solution
&

A Software Challenge

Outline

 Hardware Solution (Day 1)

 Software Challenge (Day 2)

 Opportunities

Parallel Processing is Essentially an Evolution in

 Micro- and Macro-Architecture Hardware

 That provides a Solution to:

• The Heat and Power Wall

• The Limitations of ILP

• Cost-Effective Higher Performance

Key Points from Day 1

Hardware Solution

 HW Paradigm Shift Occurring (esp. Micro-level)

 More Cores; Not a Faster Clock or more ILP

Outline

 Hardware Solution

 Software Challenge

 Opportunities

 Technical
 Business

Software Challenge - Technical

Change in Hardware Requires Change in Software

 The Car (Hardware) has Changed

• From a Sequential Engine To a Parallel Engine

 The Driver (Software) Must Change Driving Techniques

• Otherwise, Sub-Optimal Performance will Result

Hardware
&

Software

Car
&

Driver

 Because HW is going Parallel, so must the SW
in order to get performance gains from HW platform

Software Challenge - Technical

GHz Era Multi-core Era

TIME

PE
R

FO
R

M
A

N
C

E Multi-core Needs
Parallel Applications

Software Challenge - Technical

 The Challenge:

Cannot Extract Parallelism Without User Support

 The Goal: Make Parallel Programming the

Mainstream Method for Improving SW Performance

 But Parallel Programming is Harder in all Aspects:

• Design & Re-engineering

• Debugging

• Testing

• Profiling

• Scaling

Overview

Software Challenge - Technical

 Increased Complexity will Require More Careful Analysis

• Parallelism Adds Temporal Dimension to Problem

• Hard for Humans to Think about Parallel Events

• Large Permutation of Operation Interleavings Possible

 Increased Programmer Expertise Needed in:

• The Application Domain and Algorithms

• Source Code Parallelization Techniques

• Communication & Synchronization

• Performance Optimization

Design & Re-engineering

• Static Dependency Analyzer: Draws Call-Graph Structure

• Dynamic Profile Analyzer: Plots Thread Activity vs. Time

• Code Parallelizer: Parallel Language, Paradigm, Compiler

User

Dynamic
Analyzer

Code
Parallelizer

Serial
Code

Static
Analyzer Parallel

Code

Code Parallelization Tools

User Role in Code Parallelization

• Run & Interpret Static Data Dependency Analysis

• Run & Interpret Dynamic Profile Analysis

• Drive Code Parallelizer Transformations

User

Dynamic
Analyzer

Code
Parallelizer

Source
Code

Static
Analyzer

User Knowledge in Code Parallelization

• High-Level Application Code and Algorithms

• Low-Level Thread and Communication Profile

• Source Code Parallelization & Optimization Techniques

User

Code
Parallelizer

Source
Code

User Knowledge in Code Parallelization

• High-Level Application Code and Algorithms

• Low-Level Thread and Communication Profile

• Source Code Parallelization & Optimization Techniques

User

Code
Parallelizer

Source
Code

Goal:
Assist The User

Help User Focus on

Relevant Information

from Analyses

Code
Parallelizer

Source
Code

Help User Focus on

the Code with Best

Potential Speedup

Ultimate Goals

• Off-Load User as Much as Possible

• Make Parallelization Easier and More Efficient

• Maximize Code Performance Gain

• Minimize Analysis and Transformation Time

• Perform Data Fusion on Static and Dynamic Analysis

• Filter, Correlate, and Interpret the Results

• Produce Correct, Bug-Free Parallel Code

• Increase Degree of Automation

An Ideal Set of Parallelization Tools Would:

But, Current SW Tools Still Need Further Development

Software Challenge - Technical

 Lack of Tools Compounds Problem

• Existing Tool Chain only for Sequential Programming

 Need New Parallel Programming Tools & Infrastructure

• Effective Models for Parallel Systems

• Constructs to make Parallel Architecture more Visible

• Languages to More Clearly Express Parallelism

• Reverse Engineering Analysis Tools

• To Assist with Conversion of Sequential to Parallel

 Especially for Optimized Sequential Code

Tools

Software Challenge - Technical

 Parallelism can Give Rise to a New Class of Problems

• Caused by the Interactions Between Parallel Threads

 Race Condition:

Multiple Threads Perform Concurrent Access

to the Same Shared Memory Location

 Threads “Race” Against Each Other

• Execution order is assumed but cannot be guaranteed

• Outcome depends on which one wins (by chance)

• Results in Non-Deterministic Behavior

Race Conditions

Software Challenge - Technical

ATM Race Condition Example

Joint Bank
Account

$ 300

1) Check Balance

2) Withdraw $300

“$300” “$300”

? ?

 Race Conditions are Especially Hard to Detect & Debug

• Errors are Very Subtle

• No Apparent “Failure” Occurs

• Program Continues to Run “Normally”

• Program Completes “Normally”

• Errors are Intermittent

• Hard to Reproduce and Diagnose

• Errors Can Slip Through SQA Testing Process

• Potential Lurking Bug

 Most Common Error in Parallel Programs

Software Challenge - Technical

Race Conditions

Software Challenge - Technical

Semaphores

 Semaphores Offer a Solution to Race Conditions

• However Semaphores themselves can cause Problems:

• Introduce Overhead

• Can Create Bottlenecks

• Mutually Exclusive (one-at-a-time) Access

Software Challenge - Technical

 Another Potential Problem Arising From Parallelism

 Deadlock:

Two or More Threads are Blocked because

Each is Waiting for a Resource Held by the Other

Deadlock

Thread 1 Thread 2

Sem_B

Sem_A

Requests

Requests

Held by

Held by

Software Challenge - Technical

Deadlock

 Not as Hard as Race Conditions

• Errors are More Obvious

• System Usually Freezes

 But Similar to Race Conditions

• Errors are Intermittent

• Hard to Detect, Reproduce, Diagnose, Debug

• Errors Can Slip Through SQA Testing Process

• Potential Lurking Bug

 Another Common Error in Parallel Programs

Software Challenge - Technical

 Time-Sharing = Multi-Tasking = Multiplexing = Concurrent

 One Processor is being shared (switched quickly)

between tasks making them appear to be “Concurrent”

 But it’s essentially just an illusion, because

at any instant in time, only one task is really executing

 Concurrency is not the same as true Parallelism

Concurrent: Two Threads are In Progress at Same Time
vs.

Parallelism: Two Threads are Executing at Same Time

Concurrent vs. Parallel

Software Challenge - Technical

 SW Problem is Harder than that from “Time-Sharing” Era

• Multi-Cores (Micro) & Multi-Nodes (Macro) HW enable:

- Not Just “Multi-Tasking” or Concurrency, but

- True Parallelism

 Potential Problem when migrating “Multi-Tasking” Code

 Consider a SW Application Programmed with Two Tasks:

• One task is assigned a low priority; other a high priority

• In Multi-Tasking: LP task cannot run until HP is done

• Programmer could have assumed Mutual Exclusion

• In Parallel System: LP and HP can run at Same Time

Concurrent vs. Parallel

Software Challenge - Technical

 Harder Because of Intermittent, Non-Deterministic Bugs

 Time Sensitive (Temporally Aware) SW Tools Needed

 New Parallel Debugging Tools Required

• Need to Exert Temporal Control over Multiple Threads

• Ideal Debugger would have:

Reverse Execution Capability (cycle-accurate undo)

Instant Replay Capability (w/ accurate time counter)

 Cannot Use Ad-hoc Debugging via PRINT Statements

• Adds Extra Instructions which could Change Timing

Debugging

Software Challenge - Technical

 Simple Code Coverage Metrics Insufficient

e.g.) Just Tracking Statement or Branch Executions

 Need to Consider Other Code Executing in Parallel

• Want to Test All Possible Instruction Interleavings

• Otherwise, Code Would Not Be Fully Exercised

• Especially Important to Check Interactions In Time

Race Condition Deadlock

Testing

Software Challenge - Technical

 Important to Know Which Code (sections) to Optimize

• Concentrate on “Hot” Spots

 Harder in Parallel Because Must Consider:

• Thread Creation & Synchronization Overhead

• Communication to Computation Ratio

• Thread Balancing

Performance Profiling and Tuning

t
i
m
e

Busy
Idle

Software Challenge - Technical

Amdahl’s Law

 Parallel Speedup is Limited by the Amount of Serial Code

Maximum Theoretical Speedup from Amdahl's Law

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

Number of cores

S
p

e
e

du
p

%serial= 0

%serial=10

%serial=20

%serial=30

%serial=40

%serial=50

Software Challenge - Technical

Parallel Scaling

 Potentially Negative ROI due to Parallel Overhead

Speedup vs. Degree of Parallelism

Degree of Parallelism

Speedup

Software Challenge - Technical

 Implications of Amdahl’s Law:

• Diminishing Marginal Rates of Return from Parallelism

• It will be Hard to get good Parallel Scaling from SW

• Eliminating Sequential Code is Important

• Even Small Amounts of Serial Execution can

Render a Parallel Machine Ineffective

 Applications That Lack Sufficient Parallelism Will Be

Performance Dead Ends

Parallel Scaling

Software Challenge - Business

Changing Technology Curves is Hard

Cost / Performance vs. Performance

Performance

Cost

Performance

P1

P2

P3

 New Technology Curves Generally Appear “Down Right”

Software Challenge - Business

Changing Technology Curves is Hard

Cost / Performance vs. Performance

Performance

Cost

Performance

 Never Ride Technology Curve “Up” into Over-Utilization

Sequential

Parallel

Software Challenge - Business

Changing Technology Curves is Hard

Cost / Performance vs. Performance

Performance

Cost

Performance

 Change (“Hop Down Right”) to New Tech Curve Instead

Sequential

Parallel

Software Challenge - Business

Changing Technology Curves is Hard

 Investment in Training and New Tools Required

• Learning Curve for Employees

• Entirely New SW Engineering Infrastructure

• Design / Re-engineering

• Debugging

• Testing

• Profiling

• Scaling

 Legacy Code Needs to be Re-engineered for Parallelism

Parallel Programming is Hard

• More Complex

• Lack of Tools

• New Type of Bugs

• Race Conditions

• Deadlocks

• Harder to Debug, Test, Profile, Tune, Scale

Parallel Programming is a Software Challenge

Key Points

Software Challenge

Outline

 Hardware Solution

 Software Challenge

 Opportunities
 Technical
 Business

Opportunities - Technical

 Opportunity to Create New SW Engineering Infrastructure

 Better, Smarter Tools for

• Design / Re-engineering

• Debugging

• Testing

• Profiling

 Opportunity to Re-Invent Entire SW Engineering Field

 Algorithms, Languages, Compilers, Processes……

 Dawn of a New Era

• Second Chance (to get it right)

Opportunities - Technical
 The Universe is Inherently Parallel

• Natural Physical and Social / Work Processes

• Weather, Galaxy Formation, Epidemics, Traffic Jam

 Can Leverage Unique Capabilities offered by Parallelism

 Add New Features via Separate Parallel Modules

• Avoids Re-engineering of Old Module

• More Functionality

• No Increase in Wall Processing Times

 Speculative Computation

Precompute alternatives to Minimize Response Time

e.g.) Video Game Up / Down / Left / Right

More Responsive User Interfaces

Opportunities - Technical
 (Yet) Undiscovered Technical Opportunities

 New Parallel Algorithms

 Super-Linear Speedups

• Parallel Computer has
N times more Memory

• Larger % of SW can fit
in upper Levels of
Memory Hierarchy

• “Divide and Conquer”
leverages faster Mems

• An Important Reason for
using Parallel Computers

Opportunities - Business

High Performance Computing (HPC)

 Cloud and Parallel Processing Makes HPC Ubiquitous

 New Applications Become Possible

• Personalized Drugs (Genetic & Molecular Profiling)

• Stream Computing (Real-Time Analytics)

 Smarter Applications Become Possible

• Virtual Assistants

 Efficiency Becomes Possible

• High-Fidelity Simulations

e.g.) Car Safety Tests

Opportunities - Business

Opportunities - Business

High Performance Computing (HPC)

 Grand Challenges Become Possible

 Grand Challenge was Defined by Wilson in 1987:

• Fundamental Problem in Science or Engineering

• Has Potentially Broad Economic and Scientific Impact

• Could be Advanced with HPC Resources

 Grand Challenge 3T Goal:

• 1 TeraFlop/second of Processor Power

• 1 TeraByte of Main Memory

• 1 TeraByte/second of I/O Bandwidth

Opportunities - Business

High Performance Computing (HPC)

 Examples of Grand Challenges

• Data Mining and Fusion

• Hurricane Prediction

• Global Warming

• World Hunger

• Cure for Serious Diseases

Opportunities - Business

New Capabilities to Benefit Mankind

Opportunities - Business

New Capabilities to “Entertain” Mankind

…. Maybe even “OutSmart” Mankind

Opportunities - Business

Corporate & National Competiveness

Opportunities - Business

Visualization

 Assist in the Interpretation of Massive Data Sets.

 For example, a 5 day weather forecast of the
continental U.S. would produce 10 terabytes

 No one can look at that many numbers,

But a Picture is worth a Thousand Words.

And a Movie or Animation is worth a Million Words.

• Time-lapse simulation of Global Warming

 Humans can detect and interpret high-level visual

Patterns even better than a computer can today.

Example Visualization:
Weather Forecast

Example Visualization:
Structure of the Universe

Opportunities - Business

Opportunities – Business
Meeting People’s Expectations
About Multitasking Capabilities

There's no multitasking. "Are you saying I can't listen to Pandora
while writing a document? I can't have my Twitter app open at the
same time as my browser? I can't have AIM open at the same
time as my email? Are you kidding me? This alone guarantees
that I will not buy this product," Gizmodo's Adam Frucci writes.

Apple
iPad

Jan 2010

The World is Moving Towards

Parallel Processing On The Cloud

The Cloud Offers Even More Opportunities

Opportunities - Business

Ubiquitous HPC via Cloud

 HPC on Mobile Devices Possible

 “CloneCloud” (Berkeley Research Labs)

• Clone Smartphone in Cloud

- Off-load Compute-Intensive tasks

- Conserve Mobile Device Battery Life

 “Fusion Render Cloud” for Mobile Gaming (AMD)

• Cloud Computes Game Graphics and Compresses it

• Mobile’s Computation Simplified to Decompression

Using Parallel Programming,
You Can Reach The Clouds

And The Sky is The Limit !

Wondering about Parallel Programming?

Plan to Read Entire MCP Book, *Except* for:

- Skip Ch. 5
- Read only the first part of Ch. 8 (up to 219)
- Read only the first part of Ch. 10 (up to 265)
- Only Skim Ch. 11

