CS 286

Two Lecture Introduction

Parallel Processing:

A Hardware Solution

 \&A Software Challenge

Outline

* Hardware Solution (Day 1)
* Software Challenge (Day 2)
* Opportunities

Outline

* Hardware Solution - Technical
* Software Challenge
- Technical
* Opportunities
- Technical

Outline

* Hardware Solution
- Technical
- Business
* Software Challenge
- Technical
- Business
* Opportunities
- Technical
- Business

Outline

* Hardware Solution
- Technical
- Business
* Software Challenge
* Opportunities

Hardware Solution - Technical

Evolution of Computer Architectures

Computer Hardware Evolution Highway

Micro

Macro

$\begin{array}{c:c}\text { Car } & \text { Hardware } \\ \& & \& \\ \text { Driver } & \text { Software }\end{array}$

Hardware Solution - Technical

Evolution of Computer Architectures Micro-Scopic View

Hardware Solution - Technical

Evolution of Computer Architectures

 Micro-Scopic View

Intel 8086 1978
29,000
5 MHz

Year
Transistors 291,000,000
Clock Frequency 2006 2.9 GHz

Intel Core 2 Duo

Hardware Solution - Technical

Evolution of Computer Architectures Micro-Scopic View

* In 28 Years from 1978 to 2006:
- Number of Transistors Increased 10,034X
- Clock Frequency Increased 586X
* Primary Driver / Facilitator was (and is) Moore's Law:
- Number of Transistors Doubles every 18-24 Months
- Stated by Gordon Moore, Intel Co-Founder in 1965
- Prediction has been proven valid over a long term
- "Prediction" has been the "Law" for over 40 years

Hardware Solution - Technical

Evolution of Computer Architectures Micro-Scopic View

Hardware Solution - Technical

Evolution of Computer Architectures Micro-Scopic View

\& Historically, Huge Performance Gains came from Huge Clock Frequency Increases Unfortunately

Hardware Solution - Technical

Evolution of Computer Architectures Micro-Scopic View

Clock Rate Limits Have Been Reached

Hardware Solution - Technical

Evolution of Computer Architectures Micro-Scopic View

Hardware Solution - Technical

Evolution of Computer Architectures Micro-Scopic View

- Power (and Heat) Grows as Frequency ${ }^{3}$

Power \propto Voltage $^{2} \times$ Frequency
Voltage \propto Frequency
Power \propto Frequency 3

- How can HW Performance Continue to Increase?

Single Core vs. Dual Core

Single Core clocked at $2 f$

$2 f$

Sequential Processing

Hardware Solution - Technical

Evolution of Computer Architectures Micro-Scopic View

> Instruction-Level Parallelism (ILP) was also Heavily Used
> Implemented On-Chip via Hardware
$>$ Transparent to Software (No impact on Programmers)
> We will Study Two Types:
$>$ Pipelining (Intra-Instruction Parallelism)
$>$ Multi-Function Units (Inter-Instruction Parallelism)
$>$ ILP has provided reasonable speedups in the past, Unfortunately.......

Hardware Solution - Technical

Evolution of Computer Architectures Micro-Scopic View

truction-Level Parallelism Limits have been Reached too


```
Power grows
exponentially
```

100
10

Single-Issue Superscalar Superscalar Pipelined
(Limited (Aggressive Look-Ahead) Look-Ahead)

Aggressiveness
Of ILP

Hardware Solution - Technical

Evolution of Computer Architectures

> Gain - to - Effort Ratio of ILP beyond "Knee" of Curve

Diminishing Returns due to
Increased Cost and Complexity of Extracting ILP

Performance

Made sense to go
Superscalar and
Multi-Function:
Good ROI

Very little gain for
substantial effort

Scalar
In-Order

Moderate
Pipelining,
Look-Ahead

Very Deep Pipe,
Aggressive
Look-Ahead

Hardware Solution - Technical

Evolution of Computer Architectures Micro-Scopic View Summary

> Clock Frequency Scaling Limits have been Reached
> Instruction Level Parallelism Limits have been Reached
> Era of Single Core Performance Increases has Ended
> No More "Free Lunch" for Software Programmers
> Multiple Cores Will Directly Expose Parallelism to SW
> All Future Micro-Processor Designs will be Multi-Core
> Evident in Chip Manufacturer's RoadMaps

Hardware Solution - Technical

Evolution of Computer Architectures Micro-Scopic View Summary

Hardware Solution - Technical

Evolution of Computer Architectures Micro-Scopic View Summary

> Moore's Law Continues to 2x Transistors / 24 mos, but It will be used to Increase Number of Cores Instead

IERAFLOP OF PERFORMANCE

Single Core
Sequential Processing

Multi-Core
Parallel Processing

Hardware Solution - Technical

Evolution of Computer Architectures

Computer Hardware Evolution Highway

Micro

Macro

Hardware Solution - Technical Evolution of Computer Architectures Macro-Scopic View

Personal Computer
Nodes: 1
Location: Desktop

Hardware Solution - Technical

Evolution of Computer Architectures

 Macro-Scopic ViewCluster Computer
Nodes: 10's - 100's
Location: Local

Hardware Solution - Technical

Evolution of Computer Architectures Macro-Scopic View

Example Cluster Computer

Hardware Solution - Technical

Evolution of Computer Architectures

 Macro-Scopic View

Hardware Solution - Technical

Evolution of Computer Architectures

Macro-Scopic View

Hardware Solution - Technical

Evolution of Computer Architectures

 Macro-Scopic View

Cloud Computer
Nodes: 10,000's
Location: Highly
Distributed

Hardware Solution - Technical

Evolution of Computer Architectures

 Macro-Scopic View

Hardware Solution - Technical
 Evolution of Computer Architectures Macro-Scopic View Summary

Single Node
Sequential Processing

Parallel Processing

Hardware Solution - Business Evolution of Computer Architectures

Hardware Solution - Business

\& Computer Processing Power:

- Has a Highly Elastic Supply and Demand Curve
- Increased Supply Generates Increased Demand

* Software is Like a Gas
- It Expands to Fill any size Hardware Container

Hardware Solution - Business

" 640 K should be enough for anybody" Bill Gates, 1981
"There is a world market for maybe five computers" Thomas Watson, 1943

Even Visionaries Sometime Forget
No Matter How Much Computer Power People Have, They Always Want More

* Goal of Computer Hardware and Software Designers
- Continually Increase Performance and Lower Cost
- Operate at Optimum Point on Technology Curve

Parallel Processing

Hardware Solution - Business Technology Curve

$\frac{\text { Cost }}{\text { Performance }}$

Cost / Performance

 VS. Performance

Performance

Hardware Solution - Business Technology Curve

$\frac{\text { Cost }}{\text { Performance }}$

Cost / Performance

 VS. Performance

Performance

Hardware Solution - Business Technology Curve

$\left.\begin{array}{c}\text { Cost } \\ \hline \text { Performance }\end{array} \begin{array}{c}\text { Cost / Performance } \\ \text { vs. } \\ \text { Performance }\end{array}\right)$
\$\$\$\$\$\$
Sequential Processing

Hardware Solution - Business Technology Curve

$\left.\begin{array}{c}\text { Cost } \\ \hline \text { Performance }\end{array} \begin{array}{c}\text { Cost / Performance } \\ \text { vs. } \\ \text { Performance }\end{array}\right)$
\$\$\$\$\$\$
Sequential Processing

Hardware Solution - Business Technology Curve

Key Points

Hardware Solution

$>$ Parallel Processing is really an Evolution in
$>$ Micro- and Macro-Architecture Hardware
> That provides a Solution to:

- The Heat and Power Wall
- The Limitations of ILP
- Cost-Effective Higher Performance
> Parallel Processing is also a Software Chaıınge

