CS 286 Two Lecture Introduction

Parallel Processing: A Hardware Solution & A Software Challenge

We're on the Road to Parallel Processing

Hardware Solution (Day 1)

Software Challenge (Day 2)

Opportunities

Hardware Solution Technical

Opportunities Technical

Hardware Solution

- Technical
- Business
- Software Challenge
 - Technical
 - Business

Opportunities

- Technical
- Business

Outline

Hardware Solution

- Technical
- Business
- Software Challenge

Opportunities

Hardware Solution - Technical **Evolution of Computer Architectures**

Computer Hardware Evolution Highway

Car

&

Macro

Intel 8086		tel Core 2 Duo
1978	Year	2006
29,000	Transistors	291,000,000
5 MHz	Clock Frequency	2.9 GHz

In 28 Years from 1978 to 2006:

- Number of Transistors Increased 10,034X
- Clock Frequency Increased 586X

Primary Driver / Facilitator was (and is) Moore's Law:

- Number of Transistors Doubles every 18-24 Months
- Stated by Gordon Moore, Intel Co-Founder in 1965
- Prediction has been proven valid over a long term
 - "Prediction" has been the "Law" for over 40 years

Huge Clock Frequency Increases

Unfortunately

Clock Rate Limits Have Been Reached

Source: Patterson, Computer Organization and Design

Intel Developer Forum, Spring 2004 - Pat Gelsinger

Hardware Solution - Technical **Evolution of Computer Architectures** Micro-Scopic View Power (and Heat) Grows as Frequency³ Power \propto Voltage² x Frequency Voltage \propto Frequency Power \propto Frequency³ • How can HW Performance Continue to Increase? Single Core Multi-Core

Instruction-Level Parallelism (ILP) was also Heavily Used Implemented On-Chip via Hardware

Transparent to Software (No impact on Programmers)

We will Study Two Types: Pipelining (Intra-Instruction Parallelism) Multi-Function Units (Inter-Instruction Parallelism)

ILP has provided reasonable speedups in the past, Unfortunately.....

Instruction-Level Parallelism Limits have been Reached too

Clock Frequency Scaling Limits have been Reached

- Instruction Level Parallelism Limits have been Reached
- Era of Single Core Performance Increases has Ended
- No More "Free Lunch" for Software Programmers
 Multiple Cores Will Directly Expose Parallelism to SW
- All Future Micro-Processor Designs will be Multi-Core
 Evident in Chip Manufacturer's RoadMaps

Hardware Solution - Technical **Evolution of Computer Architectures** Micro-Scopic View Summary Intel Multi-core Roadmap 2005 2006 2007 Future Platform Tukwila Poulson Itanium® Itanium® 2 Processor Montecito Montvale. processor Dimona thion Intel[®] Xeon[®] Intel® Xeon⁶ Tigerton Dunnington MP Server Tulsa processor MP processor MP Intel® Xeon® processor DP Server / Intel® Xeon® Clovertown Dempsev Woodcrest ws Processor w/ 2MB Future cache Sossaman UP Server / Kentsfield Pentium[®] Processor Power 5 WS Pentium® D Extreme Edition Future Conroe Desktop (Presler) Client Pentium® D Intel Core™ Merom Future Pentium[®] M processor Mobile Duo Client solaris Multi-core Multi-core Single intel ULTRASPARC Refer to 'fact sheet' for All products and dates are preliminary and core (>=2 cores) (>=4cores) subject to change without notice specific product timings

It will be used to Increase Number of Cores Instead

Hardware Solution - Technical Evolution of Computer Architectures

Computer Hardware Evolution Highway

Macro

Personal Computer Nodes: 1 Location: Desktop

Cluster Computer Nodes: 10's – 100's Location: Local

Example Cluster Computer

Cloud Computer Nodes: 10,000's Location: Highly Distributed

Single Node

Sequential Processing

Many Nodes

Parallel Processing

Hardware Solution - Business Evolution of Computer Architectures

Key Points

Hardware Solution

Parallel Processing is really an Evolution in

- Micro- and Macro-Architecture Hardware
 - That provides a Solution to:
 - The Heat and Power Wall
 - The Limitations of ILP
 - Cost-Effective Higher Performance

Parallel Processing is also a Software Challenge