
Intel® Manycore Testing Lab (MTL) - Linux

Getting Started Guide

Introduction

What are the intended uses of the MTL?

The MTL is prioritized for supporting the Intel Academic Community for the

testing, validation and scaling of parallel algorithms and workloads, primarily for

courseware delivery, and secondly for research - based on availability.

The MTL supports a default shared login node (many users), for workload

development and a limited number of batch nodes for benchmarking. The nodes

are located in DuPont, Washington, USA, and are directly connected to the

Internet via dedicated firewall devices.

The MTL is not configured or setup as a cluster, so MPI is not a supported option

for our community. The current system resources therefore do not support a

distributed memory programming model.

What is the configuration of the MTL?

Manycore Testing Lab Configuration

compute

node

compute

node

compute

node

compute

node

Firewall

batch

node

batch

node

batch

node

batch

node

High Speed Network

License

Server

Intel DMZ network

Login

node

(acano01)

File

Server

Note: The batch nodes, don’t necessary have the same memory and CPU

configurations as the login node. Look for system configuration update

announcements on the MTL forum: http://software.intel.com/en-us/forums/intel-

manycore-testing-lab/

How do I get an account?

Use of the MTL is a benefit for members of the Intel Academic Community,

available free of charge, for the asking. However, users must request an account

from the Intel Academic Community; http://software.intel.com/en-us/academic/

How do I connect?

Once an account is available, use SSH to connect to one of the following IP

addresses using your favorite terminal connection software, e.g. ssh, Putty, F-

Secure, etc:

IP-address System name Connection Model

36.81. 203.1 acano01 VPN
192.55.51.81 acano01 Direct IP

Note1: If you’re using a VPN client to connect to the MTL, you must first invoke

the VPN client to establish the connection to the Host (named above), before

using the appropriate terminal connection model.

Note2: Ping is not configured to pass through the MTL firewall without a VPN

tunnel, so all ping requests to acano01, will be rejected.

Where can I get a copy of a VPN client to access MTL?
Cisco® owns the rights for the VPN client – it can be obtained from this site:

http://www.supreme.state.az.us/downloads/VPN/

Download and install the Cisco VPN client either the 32-bit or 64-bit client as

appropriate.

Note: These only work with Windows.

Within the VPN client please specify the following (under Group Authentication):

Host: 192.55.51.80

Name: <VPN_GROUP_NAME>

Password: <VPN_PASSWORD>

Connection Entry & Description (not significant)

Note: when the VPN tunnel is connected you will not be able to use your machine

to connect to anything else, i.e. the web or other systems.

Intermediate

What tools are available on the MTL?

The login node as well as the rest of the MTL is built upon Linux. The current

distribution in use is Redhat Enterprise Linux (RHEL 5.4, kernel 2.6.18-
194.11.4.el5) but that particular distribution is subject to change.

A reasonable set of login shells are available including the default, bash, as well

as tcsh and zsh. In addition most of the typical Linux command line tools such as

vim, emacs, gcc, make, python, perl, mc, etc. are available.

VNC(GUI) and screen(tty) interfaces are available for multiplexing your ssh

connection as well as preserving the state of user logins. VNC will need to be

routed through the primary ssh connection (e.g. Putty) using port forwarding.

Please see a relevant MTL forum posting for more details how set up an X

connection: http://software.intel.com/en-us/forums/showthread.php?t=76570&o=a&s=lr

or search the MTL forum: http://software.intel.com/en-us/forums/intel-manycore-

testing-lab/

Man pages are available for most commands and are a good starting point when

you have questions.

What resources are available on the MTL?

A PBSPro 10.2 batch system, is available and required for batch job submission.

For the latest PBSPro v10.2 commands, please. read:

/opt/docs/PBSProUserGuide10.2.pdf

The /home directories are NFS-mounted from a standard storage server with a

total capacity of over 1TB.

Intel performance tools: Intel® Parallel Studio XE which includes:, Intel®

Composer XE, Intel® VTune Amplifier XE and Intel® Inspector XE are

available.

Note: If you wish to use the Intel® VTune Amplifier XE; you must have

permission to write to the driver in order to proceed. Also, you’ll need to run an

X-terminal to use the VTune GUI.

To use the Intel® VTune Amplifier XE:

 First set your environment variables using:

$ source /opt/intel/vtune_amplifier_xe_2011/amplxe-vars.sh

To start the graphical user interface:

$ amplxe-gui
To use the command-line interface:

$ amplxe-cl
To view a table of getting started documents:

 /opt/intel/vtune_amplifier_xe_2011/documentation/en/documentation_
amplifier.htm

To use the Intel® Inspector XE:

 First set your environment variables using:

$ source /opt/intel/inspector_xe_2011/inspxe-vars.sh
To start the graphical user interface:

$ inspxe-gui
To use the command-line interface:

$ inspxe-cl
To view a table of getting started documents:

 /opt/intel/inspector_xe_2011/documentation/en/documentation_inspec
tor_xe.htm

Additional system wide tools will be made available, so look for announcements

on the MTL forum: http://software.intel.com/en-us/forums/intel-manycore-

testing-lab/

How do I compile my code using a specific compiler or library?
gcc/g++ (v4.1.2) is the default compiler

To compile with the updated version (4.5.1) of the gcc compiler suite (that

supports OpenMP v3.0), use the following commands in your makefile:

GCC_VERSION = 4.5.1
PREFIX = /opt/gcc/${GCC_VERSION}/bin
CC = ${PREFIX}/gcc
CPP = $(PREFIC}/g++
LD_LIBRARY_PATH = /opt/mpfr/lib:/opt/gmp/lib:/opt/mpc/lib

It may be necessary to export the following, to get an application to

compile.

$ export LD_LIBRARY_PATH =/opt/mpfr/lib:/opt/gmp/lib:/opt/mpc/lib

Note: To use the following Intel tools it is necessary to replace "intel64" with

"ia32" when executing these source commands if you are using a 32-bit platform.

To use the Intel® Composer XE package:

Set the environment variables for a terminal window using the following:

 $ source /opt/intel/bin/compilervars.sh intel64

To invoke the installed compiler:

 For C: icc
 For C++: icpc
 For Fortran: ifort

To use the TBB library, execute the following source command:

$ source /opt/intel/composerxe/tbb/bin/tbbvars.sh intel64

To compile with the stand-alone Intel compiler, execute the following source

command:

$ source /opt/intel/Compiler/latest/bin/iccvars.sh intel64

To compile with the stand-alone Intel Fortran compiler, execute the following

source command:

$ source /opt/intel/Compiler/latest/bin/ifortvars.sh intel64

 Note: older possibly supported versions of these tools are located in:

/opt/intel/Compiler/<version>/<release>

How do I run a program in an exclusive mode (say for benchmarking)?

Qsub is the command used to submit jobs to the batch system. Using a script to

“wrap” the actual program or programs is the most effective way to submit jobs.

Here is a very simple script that merely prints a series of “hello world” when

submitted to PBS using the following qsub command:

$ qsub –l select=1:ncpus=<xx> $HOME/myjob

Note: the value of ncpus should be aligned typically to the number of threads

that your application plans to use, if unknown or greater then 40, then use the

value of 40. The reason for specifying the ncpus argument to qsub, is to better

utilize the batch nodes, in that if less than 40 cores are in use on a specific batch

node, the remaining free cores could be available for other jobs/users.

If the argument above is not used, qsub will return with the following error:

$ qsub: Rejecting job, Pls. use syntax -l select=1:ncpus=xx ..

The contents of the 5 line myjob (for OpenMP) could be:

#!/bin/sh
#PBS -N myjob
#PBS -j oe
export OMP_NUM_THREADS=16
./hello_world

The output of the batch job will be left in a file in the working directory where the

qsub command was entered. The file will be named using the PBS job name (e.g.

myjob) followed by a suffix built using .o + the job number, e.g.

myjob.o28802.

For latest PBSPro v10.2 qsub commands, please. read:

/opt/docs/PBSProUserGuide10.2.pdf - example subsection

Note: Because of the shared environment on the MTL login node (acano01), it’s

not recommended that repeatable testing (and results) be performed on this node,

the batch system it set up for this purpose.

How do I monitor the programs launched?

The qstat utility will output the status of the jobs submitted to PBS. See the man

page for the various formatting options. Here is an example output:

$ qstat -a

acano01:
 Req'd Req'd Elap
Job ID Username Queue Jobname SessID NDS TSK Memory Time S Time
--------------- -------- -------- ---------- ------ --- --- ------ ----- - ---------
323.acano01 user01 workq myjob 19290 1 32 -- 01:00 R 00:03
324.acano01 user01 workq myjob 19659 1 32 -- 01:00 R 00:02
325.acano01 user01 workq myjob -- 1 32 -- 01:00 Q --
326.acano01 user01 workq myjob -- 1 32 -- 01:00 Q --
327.acano01 user01 workq myjob -- 1 32 -- 01:00 Q --

How do I abort a program after launch?

The qdel command can be used to abort a job submitted with qsub. The job ID

is the only parameter required:

$ qdel <job_id>

Note: If you kill a job (using qdel), the PBS exit status will show 271.

Advanced

How can a program be run interactively?

Use the –I option to qsub and you will be dropped into a shell on the first compute

node:

$ qsub –I

Notes:

Using interactive mode is not necessarily a good citizen on the MTL, given the

limited number of batch nodes available and the option of specifying long batch

run duration.

So as not to block other users from running (scripted) batch jobs, a hard walltime

limit (see below), has been imposed for all interactive jobs. This hard limit is

currently set to two hours, i.e. 2:00:00. Any interactive job submitted with a

walltime over this hard-limit, will automatically fail to execute and generate the

message:

qsub: Job exceeds queue and/or server resource limits

It is strongly suggested that interactive batch runs only be submitted when PBS

scripting does not work as it is very easy to tie up an idle batch node, while

waiting for interactive shell input.

How is batch run duration specified?

$ qsub -l "walltime=0:30:00" ./my_script

Amount of Wall-clock time during which is the job can run, it establishes a job

resource limit.

Notes:

The current default is set to ten (10) minutes, if walltime is not defined.

A PBS exit status of 271 from: tracejob job_id, may indicate that the job

exceeded the wall-clock time.

How can a run-away or unresponsive program be stopped?

Try using qsig command.

$ qsig –s 9 job_id

How can I determine if my batch job will possibly run immediately?

There are a number of batch nodes on the MTL, but they may be busy running other

jobs. You can run the qfree script to determine if there are any batch nodes free at

this time. If not then you may have to wait for your batch job to be scheduled once

you submit it with qsub. This qfree script will not reserve a batch node for your use,

it just reports the current status of all the available MTL batch nodes. Here is an

example output:

$ qfree

Number of MTL Batch nodes free: 2

Number of MTL Batch nodes busy: 1

How can I specify which CPUs my application should use?

Use the taskset command, e.g.

$ taskset –c 0-15 <application>

This will specify that the application should run only on the first 16 CPUs, i.e.

CPU affinity.

$ taskset –c 0,32 <application>

This will specify (on a 64 thread SMT system), that the application should run on

both the 1st physical and the 1st logical core.

See: man taskset for more details

How can I request a number of CPUs my job should use?
To run batch jobs with a requested number of CPUs or cores you should include

the following arguments to your qsub command:

qsub -l select=1:ncpus=<xx> <job_name>

Replace xx with the number of CPUs that you want to request. Currently the

maximum value of xx can be set to 40. If you specify a number greater than 40,

your job will be queued indefinitely as this number of CPUs is not available.

Note: ncpus is a number of processors requested, it does not limit your job to an

equal number of threads. Likewise the OpenMP directive

OMP_NUM_THREADS operates independently to the ncpus=xx qsub

argument as in:

export OMP_NUM_THREADS=64

How can I specify which MTL node my application should use?
You may have a software license that is HOSTID locked and you want to only

run on a specific batch node, understanding that if that node is already busy with

another job, that your job will be queued until that host resource becomes

available.

To run jobs on a specific batch node you should include the following arguments

to your qsub command:

qsub -l select=1:host=<acano0x> <job_name>

Replace x with the batch node number that you want to test with, currently 2, 3 or
4.

How can I transfer files to the MTL and from the Internet?

You can always initiate a scp (winscp) session to MTL from your own system and

use this to upload and download files to and from your local login system. However,

due to firewall restrictions, this will only work from the login node (acano01). This

login node (acano01) is also restricted in its ability to directly access the internet for

security reasons.

It’s not recommended to transfer large files or data sets (GBs), using scp – they

should be split into smaller chunks and submitted in parallel.

How do I backup my code and/or data sets?
The MTL does not support any kind of backup of user data. It is suggested that users

keep a local copy of their data/code, to mitigate any potential loss of data from the

MTL.

Why when I run my workload, do I get resources temporarily unavailable or

unable to create thread?
This is possibly due to exceeding the number of processes/threads that are allocated

on a per user basis.

Why are my processes getting niced on the login node?

The login node (acano01) is provided as a compilation platform and test environment, so

that users have a chance to debug their programs in an environment as close as possible

to what's on the batch nodes. However, some users have been running jobs on there that

are using up a lot of CPU. Because of this, an automatic re-nicer has been set up. For

every 60 seconds of 100% CPU time a process uses, it will be niced one level – ideling

for 60 seconds gives up one niced level. Thus, after about 20 CPU minutes, that process

will have the lowest priority. This means that any code executed on the login node

(acano01), may results in the duration timings becoming indeterminate, based on it

being executed at a lower priority. This should minimize the impact of these processes

on other users.

