Maxwell Equations

Dr. Ray Kwok sjsu

•reference:

Electromagnetic Fields and Waves, Lorrain & Corson (Freeman) *Introduction to Electrodynamics*, D.J. Griffiths (Prentice Hall) *Fundamentals of Engineering Electromagnetics*, D.K. Cheng (Addison Wesley)

Electrodynamics

$$\begin{cases} \nabla \cdot \vec{E} = \frac{\rho_{t}}{\epsilon_{o}} \\ \nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \\ \nabla \cdot \vec{B} = 0 \\ \nabla \times \vec{B} = \mu_{o} \vec{J}_{t} \end{cases}$$

Gauss's Law

Faraday's Law

No magnetic charge

Ampere's Law

Inconsistence ?

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$
$$\nabla \cdot \nabla \times \vec{E} = -\frac{\partial}{\partial t} \left(\nabla \cdot \vec{B} \right)$$

div. of curl = 0 div. of B = 0 ok

$$\nabla \times \vec{B} = \mu_{o} \vec{J}_{t}$$
$$\nabla \cdot \nabla \times \vec{B} = \mu_{o} \left(\nabla \cdot \vec{J}_{t} \right)$$

$$abla \cdot \vec{J}_t = 0$$
 ??? why ?

Continuity Equation

$$\frac{d}{dt}\rho(\vec{r}(t),t) = \frac{d\rho}{dt} = \frac{\partial\rho}{\partial t} + \frac{\partial\rho}{\partial \vec{r}} \cdot \frac{d\vec{r}}{dt} \qquad \text{notation (?)}$$

$$\frac{d\rho}{dt} = \frac{\partial\rho}{\partial t} + \frac{\partial\rho}{\partial \vec{r}} \cdot \vec{v} = \frac{\partial\rho}{\partial t} + \frac{\partial}{\partial \vec{r}} \cdot (\rho\vec{v}) = \frac{\partial\rho}{\partial t} + \nabla \cdot \vec{J}$$

$$0 = \frac{\partial\rho}{\partial t} + \nabla \cdot \vec{J}$$
conservation of "matter": do/dt = 0

conservation of "matter": $d\rho/dt = 0$ Here, conservation of charges....free, bound, total.

Maxwell's work

Gauss's Law
$$\frac{\partial \rho_{t}}{\partial t} = \frac{\partial}{\partial t} \left(\varepsilon_{o} \nabla \cdot \vec{E} \right) = \nabla \cdot \left(\varepsilon_{o} \frac{\partial \vec{E}}{\partial t} \right)$$

Continuity Eqn
$$0 = \frac{\partial \rho_{t}}{\partial t} + \nabla \cdot \vec{J}_{t} = \nabla \cdot \left(\vec{J}_{t} + \varepsilon_{o} \frac{\partial \vec{E}}{\partial t} \right)$$

James Clerk Maxwell (1831 - 1879)

Faraday
$$\nabla \times \vec{E} = 0 \implies \nabla \times \vec{E} = -\frac{\partial B}{\partial t}$$

Maxwell
$$\nabla \times \vec{B} = \mu_{o}\vec{J}_{t} \implies \nabla \times \vec{B} = \mu_{o}\left(\vec{J}_{t} + \varepsilon_{o}\frac{\partial \vec{E}}{\partial t}\right)$$

such that $\nabla \cdot \nabla \times \vec{B} = \mu_{o}\nabla \cdot \left(\vec{J}_{t} + \varepsilon_{o}\frac{\partial \vec{E}}{\partial t}\right) = 0$ ~displacement current density

current density

Maxwell Equations

$$\nabla \cdot \vec{E} = \frac{\rho_{t}}{\varepsilon_{o}}$$
$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$
$$\nabla \cdot \vec{B} = 0$$
$$\nabla \times \vec{B} = \mu_{o} \left(\vec{J}_{t} + \varepsilon_{o} \frac{\partial \vec{E}}{\partial t} \right)$$

Gauss's Law

Faraday's Law

No magnetic charge

Modified Ampere's Law (Maxwell)

Together with Lorentz Force

 $\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$

describe all classical electrodynamics in free space

But, what are ρ and J?

Polarization current

No dc current because dP/dt = 0

No "free" charge flow from one side to the other. $J_f = 0$.

So $J_{t} = 0$.

Note: D is the uniform between the plates.

E is different. E is not necessary // to D inside dielectric!!! (ϵ is a tensor!!) For ac, oscillating dipole looks like the charge is crossing the dielectric !!

Polarization current

AC

In magnetic materials

linear, homogeneous, isotropic

$$\begin{split} \vec{B} &= \mu \vec{H} = \mu_o \mu_r \vec{H} = \mu_o (\vec{H} + \vec{M}) \\ \nabla \times \vec{B} &= \mu_o (\nabla \times \vec{H} + \nabla \times \vec{M}) \\ \vec{J}_t &= \vec{J}_f + \vec{J}_m = \mu_r \vec{J}_f \\ \vec{J}_m &\equiv \nabla \times \vec{M} \qquad \text{is the equivalent current density of magnetized matter} \\ \vec{M} &= \chi_m \vec{H} \qquad \chi_m \text{ is the magnetic susceptibility } > 0 \qquad \text{paramagnetic diamagnetic diamagne$$

note: $J_{\rm m}$ exists even in static field, but require spatial variation of M

Magnetization Current

e.g. in a perfectly magnetized 2D material, m = uniform inside and = 0 outside.

In reality, m don't line up perfectly and has a spatial variation, which produce a volume magnetization current or bound current.

Again, no free electron transport from one place to another in macroscopic sense.

Total current density

$$\vec{J}_{t} = \vec{J}_{f} + \frac{\partial \vec{P}}{\partial t} + \nabla \times \vec{M}$$

$$\nabla \times \vec{B} = \mu_{o} \left(\vec{J}_{t} + \varepsilon_{o} \frac{\partial \vec{E}}{\partial t} \right) = \mu_{o} \left(\vec{J}_{f} + \frac{\partial \vec{P}}{\partial t} + \nabla \times \vec{M} + \varepsilon_{o} \frac{\partial \vec{E}}{\partial t} \right)$$

$$\vec{D} = \varepsilon_{o} \vec{E} + \vec{P}$$

$$\nabla \times \vec{B} = \mu_{o} \left(\vec{J}_{f} + \frac{\partial \vec{D}}{\partial t} + \nabla \times \vec{M} \right)$$
Check with Maxwell's
$$\nabla \cdot \nabla \times \vec{B} = 0 = \mu_{o} \left(\nabla \cdot \vec{J}_{f} + \frac{\partial}{\partial t} \left(\nabla \cdot \vec{D} \right) + \nabla \cdot \nabla \times \vec{M} \right)$$

$$\nabla \cdot \nabla \times \vec{M} = 0 \qquad \text{math}$$

$$\nabla \cdot \vec{D} = \rho_{f}$$

$$\nabla \cdot \vec{J}_{f} + \frac{\partial \rho_{f}}{\partial t} = 0 \qquad \text{continuity} \qquad OK$$

In terms of free charge and current

$$\nabla \times \vec{B} = \mu_{o} \left(\vec{J}_{f} + \frac{\partial \vec{D}}{\partial t} + \nabla \times \vec{M} \right)$$
$$\vec{B} = \mu_{o} \left(\vec{H} + \vec{M} \right)$$

$$\begin{cases} \nabla \cdot \vec{D} = \rho_{f} \\ \nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \\ \nabla \cdot \vec{B} = 0 \\ \nabla \times \vec{H} = \vec{J}_{f} + \frac{\partial \vec{D}}{\partial t} \end{cases} \Leftrightarrow \begin{cases} \oint \vec{D} \cdot d\vec{a} = Q_{f} \\ \oint \vec{E} \cdot d\vec{\ell} = -\frac{\partial}{\partial t} \int \vec{B} \cdot d\vec{a} \\ \oint \vec{B} \cdot d\vec{a} = 0 \\ \oint \vec{H} \cdot d\vec{\ell} = I_{f} + \frac{\partial}{\partial t} \int \vec{D} \cdot d\vec{a} \end{cases}$$

no J_m

E & H vs. D & B

- H is related to free current
- B depends on material & history (hysteresis)
- H is measured when one builds electromagnets
- D is related to free charges
- But we measured voltage which is E·dl not charges
- Since E & H are what we measure directly, they are more commonly used than D & B.

same boundary conditions as in static case

Boundary Conditions - H

same boundary conditions as in static case

Note: J_s only exists on conductors

Summary

	Boundary co	onditions for the o	electric and mag	netic fields.	
Field Components	General Form	Medium 1 Dielectric	Medium 2 Dielectric	Medium 1 Dielectric	Medium 2 Conductor
Tangential E	$\hat{\mathbf{n}}_2 \times (\mathbf{E}_1 - \mathbf{E}_2) = 0$	$E_{1t} = E_{2t}$		$E_{1t} = E_{2t} = 0$	
Normal D	$\hat{\mathbf{n}}_2 \cdot (\mathbf{D}_1 - \mathbf{D}_2) = \rho_{\mathrm{s}}$	$D_{1n} - D_{2n} = \rho_s$		$D_{1n} = \rho_s$	$D_{2n} = 0$
Tangential H	$\hat{\mathbf{n}}_2 \times (\mathbf{H}_1 - \mathbf{H}_2) = \mathbf{J}_s$	H_{1t}	$=H_{2t}$	$H_{1t} = J_s$	$H_{2t} = 0$
Normal B	$\hat{\mathbf{n}}_2 \cdot (\mathbf{B}_1 - \mathbf{B}_2) = 0$	$B_{1n} = B_{2n} , $		$B_{1n} = B_{2n} = 0$	
Notes: (1) ρ_s is the s	surface charge density at	the boundary; (2)	J_s is the surface	current density	at the boundary;
(3) normal compone	ents of all fields are along	$\hat{\mathbf{n}}_2$, the outward	unit vector of n	nedium 2; (4) E_1	$t = E_{2t}$ implies
that the tangential co	omponents are equal in m	agnitude and par	allel in direction	; (5) direction of	\mathbf{J}_{s} is orthogonal
to $({\bf H}_1 - {\bf H}_2)$.		- 1			

Phasor Equations

One can write E, H, or D, B in terms of time harmonic fields in form of: (Fourier)

 $\vec{\mathrm{E}}(\vec{\mathrm{r}},\mathrm{t}) = \Re \mathrm{e}\left\{ \vec{\mathrm{E}}(\vec{\mathrm{r}}) \mathrm{e}^{\mathrm{j}\omega \mathrm{t}} \right\}$

The amplitude E(r) is a Vector Phasor.

The Maxwell Equations (for E & H) and the corresponding phasor form are:

$$\begin{cases} \boldsymbol{\epsilon} \nabla \cdot \vec{E} = \rho_{f} \\ \nabla \times \vec{E} = -\mu \frac{\partial \vec{H}}{\partial t} \\ \nabla \cdot \vec{H} = 0 \\ \nabla \cdot \vec{H} = \vec{J}_{f} + \boldsymbol{\epsilon} \frac{\partial \vec{E}}{\partial t} \end{cases} \Leftrightarrow \begin{cases} \nabla \cdot \vec{E} = \frac{\rho_{f}}{\boldsymbol{\epsilon}} \\ \nabla \times \vec{E} = -j\omega\mu\vec{H} \\ \nabla \cdot \vec{H} = 0 \\ \nabla \times \vec{H} = \vec{J}_{f} + j\omega\boldsymbol{\epsilon}\vec{E} \end{cases}$$

Exercise

 $\vec{H}(\vec{r},t) = \hat{x}0.01\cos(900t + \beta z)$ A/m in vacuum with no current source. What is f, λ , E ?

- $\omega = 2\pi f = 900, f = 143 \text{ Hz}$
- $\lambda = c/f = (3 \times 10^8)/(143) = 2094 \text{ km}$

propagate to the -z direction

$$\nabla \times \vec{H} = j\omega \epsilon \vec{E}$$

Homework

- 1. Given that $\vec{E}(\vec{r},t) = \hat{y}0.1\sin(10\pi x)\cos(6\pi \cdot 10^9 t \beta z)$ V/m in air, find **H**(**r**,t) and β using the phasor equations.
- 2. An infinite current sheet J = x̂5 A/m coinciding with the xy-plane separates air (region 1, z > 0) from the medium with μ_{r2} = 2 (region 2, z < 0). Given that H
 ₁ = 30x̂ + 40ŷ + 202̂ A/m, find

 (a) H₂,
 (b) B₂,
 - (c) angle α_1 that $\mbox{ B}_1$ makes with the z-axis, and
 - (d) angle α_2 that B_2 makes with the z-axis.
- 3. A 60 MHz electromagnetic wave exists in an air-dielectric coaxial cable having an inner conductor with radius a and an outer conductor with inner radius b. Assuming perfect conductors, and the phasor form of the electric field intensity to be (a < r < b) $\vec{E} = \hat{r} \frac{E_o}{r} e^{-jkz} V/m$,
 - (a) find k,
 - (b) find H from the $\, \nabla \times \vec{E} = -\, j \omega \mu \, \vec{\mathrm{H}}$
 - (c) find the surface current densities on the inner and outer conductors.

