Maxwell Equations

Dr. Ray Kwok

 sjsu-reference:
Electromagnetic Fields and Waves, Lorrain \& Corson (Freeman) Introduction to Electrodynamics, D.J. Griffiths (Prentice Hall)
Fundamentals of Engineering Electromagnetics, D.K. Cheng (Addison Wesley)

Electrodynamics

$$
\left\{\begin{array}{c}
\nabla \cdot \overrightarrow{\mathrm{E}}=\frac{\rho_{\mathrm{t}}}{\varepsilon_{\mathrm{o}}} \\
\nabla \times \overrightarrow{\mathrm{E}}=-\frac{\partial \overrightarrow{\mathrm{B}}}{\partial \mathrm{t}} \\
\nabla \cdot \overrightarrow{\mathrm{~B}}=0 \\
\nabla \times \overrightarrow{\mathrm{B}}=\mu_{\mathrm{o}} \overrightarrow{\mathrm{~J}}_{\mathrm{t}}
\end{array}\right\}
$$

Gauss's Law

Faraday's Law

No magnetic charge

Ampere's Law

Inconsistence ?

$$
\begin{aligned}
& \nabla \times \overrightarrow{\mathrm{E}}=-\frac{\partial \overrightarrow{\mathrm{B}}}{\partial \mathrm{t}} \\
& \nabla \cdot \nabla \times \overrightarrow{\mathrm{E}}=-\frac{\partial}{\partial \mathrm{t}}(\nabla \cdot \overrightarrow{\mathrm{~B}}) \quad \begin{array}{l}
\text { div. of curl }=0 \\
\text { div. of } \mathrm{B}=0 \\
\text { ok }
\end{array} \\
& \nabla \times \overrightarrow{\mathrm{B}}=\mu_{\mathrm{o}} \overrightarrow{\mathrm{~J}}_{\mathrm{t}} \\
& \nabla \cdot \nabla \times \overrightarrow{\mathrm{B}}=\mu_{\mathrm{o}}\left(\nabla \cdot \overrightarrow{\mathrm{~J}}_{\mathrm{t}}\right) \\
& \nabla \cdot \overrightarrow{\mathrm{J}}_{\mathrm{t}}=0 \quad \text { ??? why? }
\end{aligned}
$$

Continuity Equation

$$
\begin{align*}
& \frac{\mathrm{d}}{\mathrm{dt}} \rho(\overrightarrow{\mathrm{r}}(\mathrm{t}), \mathrm{t})=\frac{\mathrm{d} \rho}{\mathrm{dt}}=\frac{\partial \rho}{\partial \mathrm{t}}+\frac{\partial \rho}{\partial \mathrm{r}} \cdot \frac{\mathrm{~d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}} \tag{?}\\
& \frac{\mathrm{~d} \rho}{\mathrm{dt}}=\frac{\partial \rho}{\partial \mathrm{t}}+\frac{\partial \rho}{\partial \overrightarrow{\mathrm{r}}} \cdot \overrightarrow{\mathrm{v}}=\frac{\partial \rho}{\partial \mathrm{t}}+\frac{\partial}{\partial \overrightarrow{\mathrm{r}}} \cdot(\rho \overrightarrow{\mathrm{v}})=\frac{\partial \rho}{\partial \mathrm{t}}+\nabla \cdot \overrightarrow{\mathrm{J}} \\
& 0=\frac{\partial \rho}{\partial \mathrm{t}}+\nabla \cdot \overrightarrow{\mathrm{J}}
\end{align*}
$$

conservation of "matter": d $\rho / \mathrm{dt}=0$
Here, conservation of charges....free, bound, total.

Maxwell's work

Gauss's Law

$$
\frac{\partial \rho_{\mathrm{t}}}{\partial \mathrm{t}}=\frac{\partial}{\partial \mathrm{t}}\left(\varepsilon_{\mathrm{o}} \nabla \cdot \overrightarrow{\mathrm{E}}\right)=\nabla \cdot\left(\varepsilon_{\mathrm{o}} \frac{\partial \overrightarrow{\mathrm{E}}}{\partial \mathrm{t}}\right)
$$

Continuity Eqn

$$
0=\frac{\partial \rho_{\mathrm{t}}}{\partial \mathrm{t}}+\nabla \cdot \overrightarrow{\mathrm{J}}_{\mathrm{t}}=\nabla \cdot\left(\overrightarrow{\mathrm{J}}_{\mathrm{t}}+\varepsilon_{\mathrm{o}} \frac{\partial \overrightarrow{\mathrm{E}}}{\partial \mathrm{t}}\right)
$$

James Clerk Maxwell (1831-1879)
Faraday $\quad \nabla \times \overrightarrow{\mathrm{E}}=0 \quad \Rightarrow \nabla \times \overrightarrow{\mathrm{E}}=-\frac{\partial \overrightarrow{\mathrm{B}}}{\partial \mathrm{t}}$
Maxwell $\nabla \times \overrightarrow{\mathrm{B}}=\mu_{\mathrm{o}} \overrightarrow{\mathrm{J}}_{\mathrm{t}} \quad \Rightarrow \nabla \times \overrightarrow{\mathrm{B}}=\mu_{\mathrm{o}}\left(\overrightarrow{\mathrm{J}}_{\mathrm{t}}+\varepsilon_{\mathrm{o}} \frac{\partial \overrightarrow{\mathrm{E}}}{\partial \mathrm{t}}\right)$
such that $\quad \nabla \cdot \nabla \times \overrightarrow{\mathrm{B}}=\mu_{\mathrm{o}} \nabla \cdot\left(\overrightarrow{\mathrm{J}}_{\mathrm{t}}+\varepsilon_{\mathrm{o}} \frac{\partial \overrightarrow{\mathrm{E}}}{\partial \mathrm{t}}\right)=0 \quad \begin{array}{r}\text { ~displacement } \\ \text { current density }\end{array}$

Maxwell Equations

$$
\begin{gathered}
\nabla \cdot \overrightarrow{\mathrm{E}}=\frac{\rho_{\mathrm{t}}}{\varepsilon_{0}} \\
\nabla \times \overrightarrow{\mathrm{E}}=-\frac{\partial \mathrm{B}}{\partial \mathrm{t}} \\
\nabla \cdot \overrightarrow{\mathrm{~B}}=0 \\
\nabla \times \overrightarrow{\mathrm{B}}=\mu_{\mathrm{o}}\left(\overrightarrow{\mathrm{~J}}_{\mathrm{t}}+\varepsilon_{\mathrm{o}} \frac{\partial \overrightarrow{\mathrm{E}}}{\partial \mathrm{t}}\right)
\end{gathered}
$$

Gauss's Law

Faraday's Law
No magnetic charge
Modified Ampere's Law (Maxwell)

Together with Lorentz Force

$$
\overrightarrow{\mathrm{F}}=\mathrm{q}(\overrightarrow{\mathrm{E}}+\overrightarrow{\mathrm{V}} \times \overrightarrow{\mathrm{B}})
$$

describe all classical electrodynamics in free space
But, what are ρ and J ?

In dielectrics linear, homogeneous, isotropic

$$
\begin{aligned}
& \overrightarrow{\mathrm{D}}=\varepsilon \overrightarrow{\mathrm{E}}=\varepsilon_{0} \varepsilon_{\mathrm{r}} \overrightarrow{\mathrm{E}}=\varepsilon_{0} \overrightarrow{\mathrm{E}}+\overrightarrow{\mathrm{P}} \\
& \nabla \cdot \overrightarrow{\mathrm{D}}=\varepsilon_{\mathrm{o}} \nabla \cdot \overrightarrow{\mathrm{E}}+\nabla \cdot \overrightarrow{\mathrm{P}} \\
& \rho_{\mathrm{f}}=\rho_{\mathrm{t}}-\rho_{\mathrm{b}} \quad \text { bound charge } \quad \nabla \cdot \overrightarrow{\mathrm{P}}=-\rho_{\mathrm{b}} \\
& \rho_{\mathrm{t}} \equiv \rho_{\mathrm{f}}+\rho_{\mathrm{b}}=\frac{\rho_{\mathrm{f}}}{\varepsilon_{\mathrm{r}}} \leq \rho_{\mathrm{f}} \quad \rho_{\mathrm{b}} \leq 0 \\
& \nabla \cdot \overrightarrow{\mathrm{~J}}_{\mathrm{t}}=\nabla \cdot\left(\overrightarrow{\mathrm{J}}_{\mathrm{f}}+\overrightarrow{\mathrm{J}}_{\mathrm{b}}\right)=\nabla \cdot \overrightarrow{\mathrm{J}}_{\mathrm{f}}-\frac{\partial \rho_{\mathrm{b}}}{\partial \mathrm{t}}=\nabla \cdot \overrightarrow{\mathrm{J}}_{\mathrm{f}}+\frac{\partial}{\partial \mathrm{t}}(\nabla \cdot \overrightarrow{\mathrm{P}}) \\
& \overrightarrow{\mathrm{J}}_{\mathrm{t}}=\overrightarrow{\mathrm{J}}_{\mathrm{f}}+\frac{\partial \overrightarrow{\mathrm{P}}}{\partial \mathrm{t}}
\end{aligned}
$$

Polarization current

No dc current because dP/dt =0
No "free" charge flow from one side to the other. $J_{f}=0$.
So $J_{t}=0$.
Note: D is the uniform between the plates.
E is different. E is not necessary // to D inside dielectric!!! (ε is a tensor!!)
For ac, oscillating dipole looks like the charge is crossing the dielectric !!

Polarization current

AC

In magnetic materials

linear, homogeneous, isotropic

$$
\begin{aligned}
& \overrightarrow{\mathrm{B}}=\mu \overrightarrow{\mathrm{H}}=\mu_{0} \mu_{\mathrm{r}} \overrightarrow{\mathrm{H}}=\mu_{\mathrm{o}}(\overrightarrow{\mathrm{H}}+\overrightarrow{\mathrm{M}}) \\
& \nabla \times \overrightarrow{\mathrm{B}}=\mu_{\mathrm{o}}(\nabla \times \overrightarrow{\mathrm{H}}+\nabla \times \overrightarrow{\mathrm{M}}) \\
& \vec{J}_{\mathrm{t}}=\overrightarrow{\mathrm{J}}_{\mathrm{f}}+\overrightarrow{\mathrm{J}}_{\mathrm{m}}=\mu_{\mathrm{r}} \overrightarrow{\mathrm{~J}}_{\mathrm{f}} \\
& \overrightarrow{\mathrm{~J}}_{\mathrm{m}} \equiv \nabla \times \overrightarrow{\mathrm{M}} \quad \text { is the equivalent current density of magnetized matter }
\end{aligned}
$$

$$
\begin{aligned}
& \overrightarrow{\mathrm{B}}=\mu_{\mathrm{o}}\left(\overrightarrow{\mathrm{H}}+\chi_{\mathrm{m}} \overrightarrow{\mathrm{H}}\right)=\mu_{\mathrm{o}}\left(1+\chi_{\mathrm{m}}\right) \overrightarrow{\mathrm{H}} \quad \begin{array}{c}
\gg 1 \text { ferromagnetic } \\
\ll-1 \text { anti-ferromagnetic }
\end{array} \text { eto } \\
& \mu_{\mathrm{r}}=1+\chi_{\mathrm{m}} \quad \mu_{\mathrm{r}} \text { can be }<1 \text { or negative !!! }
\end{aligned}
$$

note: J_{m} exists even in static field, but require spatial variation of M

Magnetization Current

e.g. in a perfectly magnetized 2D material, $m=$ uniform inside and $=0$ outside.

In reality, m don't line up perfectly and has a spatial variation, which produce a volume magnetization current or bound current.

Again, no free electron transport from one place to another in macroscopic sense.

Total current density

$$
\begin{aligned}
& \overrightarrow{\mathrm{J}}_{\mathrm{t}}=\overrightarrow{\mathrm{J}}_{\mathrm{f}}+\frac{\partial \overrightarrow{\mathrm{P}}}{\partial \mathrm{t}}+\nabla \times \overrightarrow{\mathrm{M}} \\
& \nabla \times \overrightarrow{\mathrm{B}}=\mu_{\mathrm{o}}\left(\overrightarrow{\mathrm{~J}}_{\mathrm{t}}+\varepsilon_{o} \frac{\partial \overrightarrow{\mathrm{E}}}{\partial \mathrm{t}}\right)=\mu_{\mathrm{o}}\left(\overrightarrow{\mathrm{~J}}_{\mathrm{f}}+\frac{\partial \overrightarrow{\mathrm{P}}}{\partial \mathrm{t}}+\nabla \times \overrightarrow{\mathrm{M}}+\varepsilon_{0} \frac{\partial \overrightarrow{\mathrm{E}}}{\partial \mathrm{t}}\right) \\
& \overrightarrow{\mathrm{D}}=\varepsilon_{0} \overrightarrow{\mathrm{E}}+\overrightarrow{\mathrm{P}} \\
& \nabla \times \overrightarrow{\mathrm{B}}=\mu_{\mathrm{o}}\left(\overrightarrow{\mathrm{~J}}_{\mathrm{f}}+\frac{\partial \overrightarrow{\mathrm{D}}}{\partial \mathrm{t}}+\nabla \times \overrightarrow{\mathrm{M}}\right)
\end{aligned}
$$

Check with Maxwell's $\quad \nabla \cdot \nabla \times \underset{\text { math }}{\overrightarrow{\mathrm{B}}=0}=\mu_{\mathrm{o}}\left(\nabla \cdot \overrightarrow{\mathrm{J}}_{\mathrm{f}}+\frac{\partial}{\partial \mathrm{t}}(\nabla \cdot \overrightarrow{\mathrm{D}})+\nabla \cdot \nabla \times \overrightarrow{\mathrm{M}}\right)$

$$
\begin{aligned}
& \nabla \cdot \nabla \times \overrightarrow{\mathrm{M}}=0 \quad \text { math } \\
& \nabla \cdot \overrightarrow{\mathrm{D}}=\rho_{\mathrm{f}} \\
& \nabla \cdot \overrightarrow{\mathrm{~J}}_{\mathrm{f}}+\frac{\partial \rho_{\mathrm{f}}}{\partial \mathrm{t}}=0 \quad \text { continuity }
\end{aligned}
$$

In terms of free charge and current

$$
\begin{aligned}
& \nabla \times \overrightarrow{\mathrm{B}}=\mu_{\mathrm{o}}\left(\overrightarrow{\mathrm{~J}}_{\mathrm{f}}+\frac{\partial \overrightarrow{\mathrm{D}}}{\partial \mathrm{t}}+\nabla \times \overrightarrow{\mathrm{M}}\right) \\
& \overrightarrow{\mathrm{B}}=\mu_{\mathrm{o}}(\overrightarrow{\mathrm{H}}+\overrightarrow{\mathrm{M}}) \\
& \left.\left\{\begin{array}{c}
\nabla \cdot \overrightarrow{\mathrm{D}}=\rho_{\mathrm{f}} \\
\nabla \times \overrightarrow{\mathrm{E}}=-\frac{\partial \overrightarrow{\mathrm{B}}}{\partial \mathrm{t}} \\
\nabla \cdot \overrightarrow{\mathrm{~B}}=0 \\
\nabla \times \overrightarrow{\mathrm{H}}=\overrightarrow{\mathrm{J}}_{\mathrm{f}}+\frac{\partial \overrightarrow{\mathrm{D}}}{\partial \mathrm{t}}
\end{array}\right\} \Leftrightarrow\left\{\begin{array}{c}
\oint \overrightarrow{\mathrm{D}} \cdot \mathrm{da}=\mathrm{Q}_{\mathrm{f}} \\
\begin{array}{c}
\text { no } \mathrm{J}_{\mathrm{m}}
\end{array}
\end{array}\right\} \begin{array}{c}
\overrightarrow{\mathrm{E}} \cdot \mathrm{~d} \vec{\ell}=-\frac{\partial}{\partial \mathrm{t}} \int \overrightarrow{\mathrm{~B}} \cdot \mathrm{da} \\
\oint \overrightarrow{\mathrm{~B}} \cdot \mathrm{da}=0 \\
\oint \overrightarrow{\mathrm{H}} \cdot \mathrm{~d} \vec{\ell}=\mathrm{I}_{\mathrm{f}}+\frac{\partial}{\partial \mathrm{t}} \int \overrightarrow{\mathrm{D}} \cdot \mathrm{da} \overrightarrow{\mathrm{a}}
\end{array}\right\}
\end{aligned}
$$

E \& H vs. D \& B

- H is related to free current
- B depends on material \& history (hysteresis)
- H is measured when one builds electromagnets
- D is related to free charges
- But we measured voltage which is $\mathrm{E} \cdot \mathrm{dl}$ not charges
- Since E \& H are what we measure directly, they are more commonly used than $D \& B$.

Boundary Conditions - E

$$
\begin{aligned}
& \oint \overrightarrow{\mathrm{D}} \cdot \mathrm{~d} \overrightarrow{\mathrm{a}}=\mathrm{Q}_{\mathrm{f}} \\
& \mathrm{D}_{1 \mathrm{n}} \mathrm{~A}-\mathrm{D}_{2 \mathrm{n}} \mathrm{~A}=\sigma_{\mathrm{s}} \mathrm{~A} \\
& \mathrm{D}_{1 \mathrm{n}}-\mathrm{D}_{2 \mathrm{n}}=\sigma_{\mathrm{s}} \quad \text { surface charge density } \\
& \left.\oint \overrightarrow{\mathrm{E}} \cdot \mathrm{~d} \vec{\ell}=-\frac{\partial}{\partial \mathrm{t}} \int \overrightarrow{\mathrm{~B}} \cdot \mathrm{~d} \hat{\mathrm{a}}=0 \quad \text { (area } \rightarrow 0\right) \\
& \mathrm{E}_{1 \mathrm{t}} \ell-\mathrm{E}_{2 \mathrm{t}} \ell=0 \\
& \mathrm{E}_{1 \mathrm{t}}=\mathrm{E}_{2 \mathrm{t}}
\end{aligned}
$$

same boundary conditions as in static case

Boundary Conditions - H

$$
\begin{aligned}
& \oint \overrightarrow{\mathrm{B}} \cdot \mathrm{~d} \overrightarrow{\mathrm{a}}=0 \\
& \mathrm{~B}_{1 \mathrm{n}} \mathrm{~A}-\mathrm{B}_{2 \mathrm{n}} \mathrm{~A}=0 \\
& \mathrm{~B}_{1 \mathrm{n}}=\mathrm{B}_{2 \mathrm{n}}
\end{aligned}
$$

$$
\oint \overrightarrow{\mathrm{H}} \cdot \mathrm{~d} \vec{\ell}=\mathrm{I}_{\mathrm{f}}-\frac{\partial}{\partial \mathrm{t}} \int \overrightarrow{\mathrm{D}} \cdot \mathrm{~d}_{\mathrm{a}}^{\hat{\mathrm{a}}}
$$

$$
\mathrm{H}_{1 \mathrm{t}} \ell-\mathrm{H}_{2 \mathrm{t}} \ell=\mathrm{J}_{\mathrm{s}} \ell
$$

$$
\hat{\mathrm{n}}_{2} \times\left(\overrightarrow{\mathrm{H}}_{1 \mathrm{t}}-\overrightarrow{\mathrm{H}}_{2 \mathrm{t}}\right)=\overrightarrow{\mathrm{J}}_{\mathrm{s}}
$$

$$
\hat{\mathrm{n}}_{2} \times\left(\overrightarrow{\mathrm{H}}_{1}-\overrightarrow{\mathrm{H}}_{2}\right)=\overrightarrow{\mathrm{J}}_{\mathrm{s}}
$$

same boundary conditions as in static case
Note: J_{s} only exists on conductors

Summary

Boundary conditions for the electric and magnetic fields.

Field Components	General Form	Medium 1 Dielectric	Medium 2 Dielectric	Medium 1 Dielectric	Conductor
Tangential E Normal D Tangential H Normal B	$\begin{gathered} \hat{\mathbf{n}}_{2} \times\left(\mathbf{E}_{1}-\mathbf{E}_{2}\right)=0 \\ \hat{\mathbf{n}}_{2} \cdot\left(\mathbf{D}_{1}-\mathbf{D}_{2}\right)=\rho_{\mathrm{s}} \\ \hat{\mathbf{n}}_{2} \times\left(\mathbf{H}_{1}-\mathbf{H}_{2}\right)=J_{5} \\ \hat{\mathbf{n}}_{2} \cdot\left(\mathbf{B}_{1}-\mathbf{B}_{2}\right)=0 \end{gathered}$		$=\rho_{\mathrm{s}}$	$\begin{array}{r} D_{1 \mathrm{n}}=\rho_{\mathrm{s}} \\ H_{\mathrm{lt}}=J_{\mathrm{s}} \\ B_{\mathrm{ln}} \end{array}$	$\begin{aligned} & D_{2 \mathrm{n}}=0 \\ & H_{2 \mathrm{t}}=0 \\ & =0 \end{aligned}$
Notes: (1) ρ_{s} is the surface charge density at the boundary; (2) \mathbf{J}_{S} is the surface current density at the boundary; (3) normal components of all fields are along $\hat{\mathbf{n}}_{2}$, the outward unit vector of medium 2; (4) $E_{1 t}=E_{2 t}$ implies that the tangential components are equal in magnitude and parallel in direction; (5) direction of J_{5} is orthogonal to $\left(\mathrm{H}_{1}-\mathrm{H}_{2}\right)$.					

Phasor Equations

One can write E, H, or D, B in terms of time harmonic fields in form of: (Fourier)

$$
\overrightarrow{\mathrm{E}}(\overrightarrow{\mathrm{r}}, \mathrm{t})=\mathfrak{R e}\left\{\overrightarrow{\mathrm{E}}(\overrightarrow{\mathrm{r}}) \mathrm{e}^{\mathrm{j} \omega t}\right\}
$$

The amplitude $E(r)$ is a Vector Phasor.
The Maxwell Equations (for E \& H) and the corresponding phasor form are:

$$
\left\{\begin{array}{c}
\varepsilon \nabla \cdot \overrightarrow{\mathrm{E}}=\rho_{\mathrm{f}} \\
\nabla \times \overrightarrow{\mathrm{E}}=-\mu \frac{\partial \mathrm{H}}{\partial \mathrm{t}} \\
\nabla \cdot \overrightarrow{\mathrm{H}}=0 \\
\nabla \times \overrightarrow{\mathrm{H}}=\overrightarrow{\mathrm{J}}_{\mathrm{f}}+\varepsilon \frac{\partial \overrightarrow{\mathrm{E}}}{\partial \mathrm{t}}
\end{array}\right\} \Leftrightarrow\left\{\begin{array}{c}
\nabla \cdot \overrightarrow{\mathrm{E}}=\frac{\rho_{\mathrm{f}}}{\varepsilon} \\
\nabla \times \overrightarrow{\mathrm{E}}=-\mathrm{j} \omega \mu \overrightarrow{\mathrm{H}} \\
\nabla \cdot \overrightarrow{\mathrm{H}}=0 \\
\nabla \times \overrightarrow{\mathrm{H}}=\overrightarrow{\mathrm{J}}_{\mathrm{f}}+\mathrm{j} \omega \varepsilon \overrightarrow{\mathrm{E}}
\end{array}\right\}
$$

Exercise

$\vec{H}(\vec{r}, t)=\hat{x} 0.01 \cos (900 t+\beta z) A / m$ in vacuum with no current source. What is f, λ, E ?
$\omega=2 \pi f=900, f=143 \mathrm{~Hz}$
$\lambda=\mathrm{c} / \mathrm{f}=\left(3 \times 10^{8}\right) /(143)=2094 \mathrm{~km}$
propagate to the $-z$ direction
$\nabla \times \overrightarrow{\mathrm{H}}=\mathrm{j} \omega \varepsilon \overrightarrow{\mathrm{E}}$
$E(r)=a_{y} j 3.77 \sin \left(900 t+3\left(10^{-6}\right) z\right) \quad V / m$
$E(z)=a_{y} 3.77 \cos \left(900 t+3\left(10^{-6}\right) z\right) \quad V / m$

Homework

1. Given that $\vec{E}(\vec{r}, t)=\hat{y} 0.1 \sin (10 \pi x) \cos \left(6 \pi \cdot 10^{9} t-\beta z\right) \quad V / m$ in air, find $\mathbf{H}(\mathbf{r}, \mathrm{t})$ and β using the phasor equations.
2. An infinite current sheet $\mathbf{J}=\hat{\mathrm{X}} 5 \mathrm{~A} / \mathrm{m}$ coinciding with the xy-plane separates air (region $1, z>0$) from the medium with $\mu_{r 2}=2$ (region $2, z<$ 0). Given that $\overrightarrow{\mathrm{H}}_{1}=30 \hat{\mathrm{x}}+40 \hat{\mathrm{y}}+20 \hat{\mathrm{z}} \quad \mathrm{A} / \mathrm{m}$, find
(a) H_{2},
(b) \mathbf{B}_{2},
(c) angle α_{1} that B_{1} makes with the z-axis, and
(d) angle α_{2} that B_{2} makes with the z-axis.
3. A 60 MHz electromagnetic wave exists in an air-dielectric coaxial cable having an inner conductor with radius a and an outer conductor with inner radius b . Assuming perfect conductors, and the phasor form of the electric field intensity to be $(a<r<b) \vec{E}=\hat{r} \frac{E_{o}}{r} e^{-j k z} V / m$,
(a) find k ,
(b) find \mathbf{H} from the $\nabla \times \overrightarrow{\mathrm{E}}=-j \omega \mu \overrightarrow{\mathrm{H}}$
(c) find the surface current densities on the inner and outer conductors.
