Transmission Line Theory

EE142
Dr. Ray Kwok

RF Spectrum

RF / Microwave Circuit

Series connection

low f

Parallel connection

Common transmission lines

most correct schematic

twisted pair VLF
lossy \& noisy

coaxial cable no distortion wide freq range
microstrip (line) no distortion wide freq range lowest cost

co-planar waveguide low cost flip chip access complex design
waveguide lowest loss freq bands

Equivalent circuit

Ideal transmission line

Kirchhoff"s law: $\mathrm{V}(\mathrm{z}, \mathrm{t})-(\mathrm{L} \Delta \mathrm{z}) \frac{\partial \mathrm{i}(\mathrm{z}, \mathrm{t})}{\partial \mathrm{t}}=\mathrm{V}(\mathrm{z}+\Delta \mathrm{z}, \mathrm{t}) \approx \mathrm{V}(\mathrm{z}, \mathrm{t})+\frac{\partial \mathrm{V}(\mathrm{z}, \mathrm{t})}{\partial \mathrm{z}} \Delta \mathrm{z}$

$$
-\mathrm{L} \frac{\partial \mathrm{i}(\mathrm{z}, \mathrm{t})}{\partial \mathrm{t}}=\frac{\partial \mathrm{V}(\mathrm{z}, \mathrm{t})}{\partial \mathrm{z}}
$$

Junction rule: $\quad i(z+\Delta z, t)-i(z, t)=-(C \Delta z) \frac{\partial V(z, t)}{\partial t} \approx \frac{\partial i(z, t)}{\partial z} \Delta z^{\quad \begin{array}{l}Q=C V \\ d Q / d t=i=C d V / d t\end{array}}$

$$
-\mathrm{C} \frac{\partial \mathrm{~V}(\mathrm{z}, \mathrm{t})}{\partial \mathrm{t}}=\frac{\partial \mathrm{i}(\mathrm{z}, \mathrm{t})}{\partial \mathrm{z}}
$$

Coupled equations (V-i)

$$
-\mathrm{L} \frac{\partial \mathrm{i}(\mathrm{z}, \mathrm{t})}{\partial \mathrm{t}}=\frac{\partial \mathrm{V}(\mathrm{z}, \mathrm{t})}{\partial \mathrm{z}} \quad-\mathrm{C} \frac{\partial \mathrm{~V}(\mathrm{z}, \mathrm{t})}{\partial \mathrm{t}}=\frac{\partial \mathrm{i}(\mathrm{z}, \mathrm{t})}{\partial \mathrm{z}}
$$

$$
-\mathrm{L} \frac{\partial^{2} \mathrm{i}}{\partial \mathrm{t}^{2}}=\frac{\partial^{2} \mathrm{~V}}{\partial \mathrm{t} \partial \mathrm{z}}=\frac{\partial}{\partial \mathrm{z}}\left(-\frac{1}{\mathrm{C}} \frac{\partial \mathrm{i}}{\partial \mathrm{z}}\right)=-\frac{1}{\mathrm{C}} \frac{\partial^{2} \mathrm{i}}{\partial \mathrm{z}^{2}}
$$

$$
\frac{\partial^{2} \mathrm{i}}{\partial \mathrm{z}^{2}}=\mathrm{LC} \frac{\partial^{2} \mathrm{i}}{\partial \mathrm{t}^{2}} \quad \text { current wave }
$$

similarly

$$
\begin{aligned}
& -\mathrm{C} \frac{\partial^{2} \mathrm{~V}}{\partial \mathrm{t}^{2}}=\frac{\partial^{2} \mathrm{i}}{\partial \mathrm{t} \partial \mathrm{z}}=\frac{\partial}{\partial \mathrm{z}}\left(-\frac{1}{\mathrm{~L}} \frac{\partial \mathrm{~V}}{\partial \mathrm{z}}\right)=-\frac{1}{\mathrm{~L}} \frac{\partial^{2} \mathrm{~V}}{\partial \mathrm{z}^{2}} \\
& \frac{\partial^{2} \mathrm{~V}}{\partial \mathrm{z}^{2}}=\mathrm{LC} \frac{\partial^{2} \mathrm{~V}}{\partial \mathrm{t}^{2}} \quad \text { voltage wave }
\end{aligned}
$$

Wave equation

$$
\begin{aligned}
& f(x \pm v t) \equiv f(u) \quad \text { reverse / forward traveling wave } \\
& \frac{\partial f}{\partial x}=f^{\prime}(u) \frac{\partial u}{\partial x}=f^{\prime}(u) \\
& \frac{\partial^{2} f}{\partial x^{2}}=f^{\prime \prime}(u) \frac{\partial u}{\partial x}=f^{\prime \prime}(u) \\
& \frac{\partial f}{\partial t}=f^{\prime}(u) \frac{\partial u}{\partial t}= \pm v f^{\prime}(u) \\
& \frac{\partial^{2} f}{\partial t^{2}}= \pm v f^{\prime \prime}(u) \frac{\partial u}{\partial t}=v^{2} f^{\prime \prime}(u) \\
& \frac{\partial^{2} \mathrm{f}}{\partial \mathrm{x}^{2}}=\frac{1}{\mathrm{v}^{2}} \frac{\partial^{2} \mathrm{f}}{\partial \mathrm{t}^{2}} \quad \text { wave equation } \\
& \text { note: } \\
& \mathrm{x} \pm \mathrm{vt}=\frac{1}{\mathrm{k}}\left(\frac{2 \pi}{\lambda} \mathrm{x} \pm \frac{2 \pi}{\lambda} \mathrm{vt}\right) \\
& =\frac{1}{\mathrm{k}}(\mathrm{kx} \pm 2 \pi \mathrm{ft}) \\
& = \pm \frac{1}{\mathrm{k}}(\omega \mathrm{t} \pm \mathrm{kx}) \\
& \mathrm{f}(\mathrm{x} \pm \mathrm{vt})=\mathrm{f}(\omega \mathrm{t} \pm \mathrm{kx}) \\
& \mathrm{f}(\omega \mathrm{t}-\overrightarrow{\mathrm{k}} \cdot \overrightarrow{\mathrm{r}}) \\
& \text { (3D) }
\end{aligned}
$$

Voltage \& Current Waves

$$
\begin{aligned}
& V(z, t)=V_{o}^{+} e^{j(\omega t-\beta z)}+V_{o}^{-} e^{j(\omega t+\beta z)} \\
& i(z, t)=I_{o}^{+} e^{j(\omega t-\beta z)}-I_{o}^{-} e^{j(\omega t+\beta z)}
\end{aligned} \quad \begin{gathered}
\text { why "-"? }
\end{gathered} \quad v=f \lambda=(2 \pi f)\left(\frac{\lambda}{2 \pi}\right)=\frac{\omega}{\beta}=\frac{1}{\sqrt{L C}}
$$

$$
\frac{\partial \mathrm{i}}{\partial \mathrm{z}}=-\mathrm{j} \beta \mathrm{I}_{\mathrm{o}}^{+} \mathrm{e}^{\mathrm{j}(\omega t-\beta z)}-j \beta \mathrm{I}_{\mathrm{o}}^{-} \mathrm{e}^{\mathrm{j}(\omega t+\beta z)}
$$

$$
\frac{\partial \mathrm{i}}{\partial \mathrm{z}}=-\mathrm{C} \frac{\partial \mathrm{~V}}{\partial \mathrm{t}}=-\mathrm{C}\left[j \omega \mathrm{~V}_{o}^{+} \mathrm{e}^{\mathrm{j}(\omega t-\beta z)}+\mathrm{j} \omega \mathrm{~V}_{o}^{-} \mathrm{e}^{\mathrm{j}(\omega t+\beta z)}\right]
$$

$$
\beta I_{o}^{+}=\mathrm{C} \omega \mathrm{~V}_{\mathrm{o}}^{+}
$$

$$
\beta \mathrm{I}_{\mathrm{o}}^{-}=\mathrm{C} \omega \mathrm{~V}_{\mathrm{o}}^{-}
$$

$$
V_{o}^{ \pm}=\frac{\beta}{C \omega} I_{o}^{ \pm}=\frac{\sqrt{L C}}{C} I_{o}^{ \pm}=\sqrt{\frac{L}{C}} I_{o}^{ \pm} \equiv Z_{o} I_{o}^{ \pm}
$$

$$
\begin{aligned}
& \mathrm{v}=\frac{1}{\sqrt{\mathrm{LC}}} \\
& \mathrm{Z}_{\mathrm{o}}=\sqrt{\frac{\mathrm{L}}{\mathrm{C}}}
\end{aligned}
$$

Fields and circuits

$$
\begin{array}{ll}
\nabla^{2}\binom{\overrightarrow{\mathrm{E}}}{\overrightarrow{\mathrm{H}}}=\mu \varepsilon \frac{\partial^{2}}{\partial \mathrm{t}^{2}}\binom{\overrightarrow{\mathrm{E}}}{\overrightarrow{\mathrm{H}}} & v=\frac{1}{\sqrt{\mu \varepsilon}} \\
\overrightarrow{\mathrm{E}}(\mathrm{z}, \mathrm{t})=\overrightarrow{\mathrm{E}}_{\mathrm{oi}} \mathrm{e}^{\mathrm{j}\left(\omega \mathrm{t}-\overrightarrow{\mathrm{k}}_{\mathrm{i}} \cdot \overrightarrow{\mathrm{r}}\right)}+\overrightarrow{\mathrm{E}}_{\mathrm{or}} \mathrm{e}^{\mathrm{j}\left(\omega t-\vec{k}_{\mathrm{r}} \cdot \overrightarrow{\mathrm{r}}\right)} & \eta=\sqrt{\frac{\mu}{\varepsilon}} \\
\overrightarrow{\mathrm{H}}(\mathrm{z}, \mathrm{t})=\overrightarrow{\mathrm{H}}_{\mathrm{oi}} \mathrm{e}^{\mathrm{j}\left(\omega \mathrm{t}-\overrightarrow{\mathrm{k}}_{\mathrm{i}} \cdot \overrightarrow{\mathrm{r}}\right)}-\overrightarrow{\mathrm{H}}_{\mathrm{or}} \mathrm{e}^{\mathrm{j}\left(\omega \mathrm{t}-\overrightarrow{\mathrm{k}}_{\mathrm{r}} \cdot \overrightarrow{\mathrm{r}}\right)} &
\end{array}
$$

$$
\begin{aligned}
& \frac{\partial^{2}}{\partial z^{2}}\binom{V}{i}=L C \frac{\partial^{2}}{\partial t^{2}}\binom{V}{i} \\
& V(z, t)=V_{o}^{+} e^{j(\omega t-\beta z)}+V_{o}^{-} e^{j(\omega t+\beta z)} \\
& i(z, t)=I_{o}^{+} e^{j(\omega t-\beta z)}-I_{o}^{-} e^{j(\omega t+\beta z)}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{v}=\frac{1}{\sqrt{\mathrm{LC}}} \\
& \mathrm{Z}_{\mathrm{o}}=\sqrt{\frac{\mathrm{L}}{\mathrm{C}}}
\end{aligned}
$$

What is Z_{o} ?

- Characteristic Impedance.
- 50 ohms for most communications system,
- 75 ohms for TV cable.
- Measure 75 ohms with a ohmmeter?
- Two 75Ω cables together (in series) makes a 150Ω cable?
- $75+75=75$!!!!
- What does Z_{o} represent?

Reflection at Load

	$V(x)=V_{o}^{+} e^{-j \beta x}+V_{o}^{-} e^{j \beta x}$
$\mathrm{z}_{\mathrm{o}} \ell \sim^{\text {c }}$	$i(x)=I_{o}^{+} e^{-j \beta x}-I_{o}^{-} e^{j \beta x}$
\longrightarrow	$\mathrm{V}(0) \equiv \mathrm{V}_{\mathrm{L}}=\mathrm{V}_{\mathrm{o}}^{+}+\mathrm{V}_{\mathrm{o}}^{-} \quad$ at the load
$x=-\ell \quad x=0$	$\mathrm{i}(0) \equiv \mathrm{I}_{\mathrm{L}}=\mathrm{I}_{\mathrm{o}}^{+}-\mathrm{I}_{\mathrm{o}}^{-}=\frac{1}{\mathrm{Z}_{\mathrm{o}}}\left(\mathrm{~V}_{\mathrm{o}}^{+}-\mathrm{V}_{\mathrm{o}}^{-}\right)$
Define normalized impedance	$\frac{\mathrm{V}_{\mathrm{L}}}{\mathrm{I}_{\mathrm{L}}} \equiv \mathrm{Z}_{\mathrm{L}}=\mathrm{Z}_{\mathrm{o}}\left(\frac{\mathrm{~V}_{\mathrm{o}}^{+}+\mathrm{V}_{\mathrm{o}}^{-}}{\mathrm{V}_{\mathrm{o}}^{+}-\mathrm{V}_{\mathrm{o}}^{-}}\right)$
$\overline{\mathrm{Z}} \equiv \underline{\mathrm{Z}}$	$\mathrm{Z}_{\mathrm{L}}\left(\mathrm{V}_{\mathrm{o}}^{+}-\mathrm{V}_{\mathrm{o}}^{-}\right)=\mathrm{Z}_{\mathrm{o}}\left(\mathrm{V}_{\mathrm{o}}^{+}+\mathrm{V}_{\mathrm{o}}^{-}\right)$
$\mathrm{Z}_{\text {o }}$	$\mathrm{V}_{\mathrm{o}}^{+}\left(\mathrm{Z}_{\mathrm{L}}-\mathrm{Z}_{\mathrm{o}}\right)=\mathrm{V}_{\mathrm{o}}^{-}\left(\mathrm{Z}_{\mathrm{L}}+\mathrm{Z}_{\mathrm{o}}\right)$
$\Gamma_{\mathrm{L}}=\frac{\overline{\mathrm{Z}}_{\mathrm{L}}-1}{\overline{\mathrm{Z}}_{\mathrm{L}}+1}$	$\frac{\mathrm{V}_{0}^{-}}{\mathrm{V}^{+}} \equiv \Gamma_{\mathrm{L}}=\frac{\mathrm{Z}_{\mathrm{L}}-\mathrm{Z}_{\mathrm{o}}}{\mathrm{Z}_{\mathrm{L}}+\mathrm{Z}_{0}} \quad \begin{gathered}\mathrm{Z}_{\mathrm{L}} \neq \mathrm{Z}_{0} \\ \text { reflection }\end{gathered}$

Example

does it work?

Impedance at Input

$$
\begin{aligned}
& V(x)=V_{o}^{+} e^{-j \beta x}+V_{o}^{-} e^{j \beta x} \\
& i(x)=I_{o}^{+} e^{-j \beta x}-I_{o}^{-} e^{j \beta x}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{Z}_{\mathrm{in}} \equiv \frac{\mathrm{~V}_{\text {in }}}{\mathrm{I}_{\text {in }}}=\frac{\mathrm{V}(-\ell)}{\mathrm{i}(-\ell)}=\frac{\mathrm{V}_{\mathrm{o}}^{+} \mathrm{e}^{\mathrm{j} \beta \ell}+\mathrm{V}_{\mathrm{o}}^{-} \mathrm{e}^{-\mathrm{j} \beta \ell}}{\frac{1}{\mathrm{Z}_{\mathrm{o}}}\left(\mathrm{~V}_{\mathrm{o}}^{+} \mathrm{e}^{\mathrm{j} \beta \ell}-\mathrm{V}_{\mathrm{o}}^{-} \mathrm{e}^{-\mathrm{j} \beta \ell}\right)} \\
& Z_{\text {in }}=Z_{o}\left(\frac{e^{j \beta \ell}+\Gamma_{L} \mathrm{e}^{-\mathrm{j} \beta \ell}}{\mathrm{e}^{j \beta \ell}-\Gamma_{\mathrm{L}} \mathrm{e}^{-\mathrm{j} \beta \ell}}\right) \\
& \bar{Z}_{\mathrm{in}}=\frac{\mathrm{e}^{-\mathrm{j} \beta \ell}\left(\frac{1+\mathrm{j} \tan \beta \ell}{1-\mathrm{j} \tan \beta \ell}\right)+\left(\frac{\overline{\mathrm{Z}}_{\mathrm{L}}-1}{\overline{\mathrm{Z}}_{\mathrm{L}}+1}\right) \mathrm{e}^{-\mathrm{j} \beta \ell}}{\mathrm{e}^{-\mathrm{j} \beta \ell}\left(\frac{1+\mathrm{j} \tan \beta \ell}{1-\mathrm{j} \tan \beta \ell}\right)-\left(\frac{\overline{\mathrm{Z}}_{\mathrm{L}}-1}{\overline{\mathrm{Z}}_{\mathrm{L}}+1}\right) \mathrm{e}^{-\mathrm{j} \beta \ell}} \\
& \bar{Z}_{\text {in }}=\frac{\left(\bar{Z}_{L}+1\right)(1+\mathrm{j} \tan \beta \ell)+\left(\overline{\mathrm{Z}}_{\mathrm{L}}-1\right)(1-\mathrm{j} \tan \beta \ell)}{\left(\overline{\mathrm{Z}}_{\mathrm{L}}+1\right)(1+\mathrm{j} \tan \beta \ell)-\left(\overline{\mathrm{Z}}_{\mathrm{L}}-1\right)(1-\mathrm{j} \tan \beta \ell)} \\
& \overline{\mathrm{Z}}_{\mathrm{in}}=\frac{2\left(\overline{\mathrm{Z}}_{\mathrm{L}}+\mathrm{j} \tan \beta \ell\right)}{2\left(\mathrm{I}+\mathrm{j} \overline{\mathrm{Z}}_{\mathrm{L}} \tan \beta \ell\right)} \\
& \overline{\mathrm{Z}}_{\mathrm{in}}=\frac{\overline{\mathrm{Z}}_{\mathrm{L}}+\mathrm{j} \tan \beta \ell}{1+\mathrm{j} \overline{\mathrm{Z}}_{\mathrm{L}} \tan \beta \ell} \\
& Z_{\text {in }}=Z_{o}\left(\frac{Z_{L}+j Z_{o} \tan \beta \ell}{Z_{o}+j Z_{L} \tan \beta \ell}\right)
\end{aligned}
$$

Exercise

$Z_{\mathrm{o}}=50 \Omega$
$Z_{\mathrm{L}}=100 \Omega$
$Z_{\text {in }}=?$
For length $=\lambda / 8 ? ~ \lambda / 4 ? ~ \lambda / 2 ?$
What if $Z_{o}=Z_{L}=50 \Omega$?

$$
\begin{aligned}
& \bar{Z}_{\text {in }}=\frac{\bar{Z}_{L}+j \tan \beta \ell}{1+j \bar{Z}_{L} \tan \beta \ell} \\
& Z_{\text {in }}=Z_{o}\left(\frac{Z_{L}+j Z_{o} \tan \beta \ell}{Z_{o}+j Z_{L} \tan \beta \ell}\right)
\end{aligned}
$$

Transmission Line Impedance

$$
\begin{aligned}
& \text { case 1: } \beta \ell=0, \text { or } \ell=0 \\
& \tan \beta=0 \\
& Z_{\text {in }}=Z_{\mathrm{L}} \\
& \text { case 2: } \beta \ell=\pi \text {, or } \ell=\lambda / 2 \\
& \tan \beta \ell=0 \\
& Z_{\text {in }}=Z_{\mathrm{L}} \\
& \text { case 3: } \beta \ell=\pi / 2, \text { or } \quad \ell=\lambda / 4 \\
& \tan \beta \ell \rightarrow \infty \\
& Z_{\text {in }}=Z_{o}^{2} / Z_{\mathrm{L}}
\end{aligned}
$$

Quarter-wave transformer (impedance), real-to-real, complex-to-complex.
note: at low freq, $\beta \rightarrow 0, Z_{\text {in }}=Z_{L}$ regardless of line length or line impedance.

Reflection at Input

$$
\begin{aligned}
& \bar{Z}_{\text {in }}=\frac{\bar{Z}_{L}+\mathrm{j} \tan \beta \ell}{1+\mathrm{j} \overline{\mathrm{Z}}_{\mathrm{L}} \tan \beta \ell} \\
& \mathrm{Z}_{\mathrm{in}}=\mathrm{Z}_{\mathrm{o}}\left(\frac{\mathrm{Z}_{\mathrm{L}}+\mathrm{j} \mathrm{Z}_{\mathrm{o}} \tan \beta \ell}{\mathrm{Z}_{\mathrm{o}}+\mathrm{j} \mathrm{Z}_{\mathrm{L}} \tan \beta \ell}\right) \\
& \Gamma_{\text {in }}=\frac{\mathrm{Z}_{\text {in }}-\mathrm{Z}_{\mathrm{o}}^{\prime}}{\mathrm{Z}_{\text {in }}+\bar{Z}_{\mathrm{o}}^{\prime}}=\frac{\overline{\mathrm{Z}}_{\text {in }}^{\prime}-1}{}
\end{aligned}
$$

$$
\text { In general } \quad \Gamma_{\text {in }}=\frac{Z_{i n}-Z_{o}}{Z_{i n}+Z_{o}}=\frac{\bar{Z}_{i n}-1}{\bar{Z}_{i n}+1}
$$

just have to know what Z to use

Exercise

$$
\begin{aligned}
& \bar{Z}_{\text {in }}=\frac{\bar{Z}_{L}+j \tan \beta \ell}{1+j \bar{Z}_{L} \tan \beta \ell} \\
& Z_{\text {in }}=Z_{o}\left(\frac{Z_{L}+j Z_{o} \tan \beta \ell}{Z_{o}+j Z_{L} \tan \beta \ell}\right) \\
& \Gamma_{\text {in }}=\frac{Z_{\text {in }}-Z_{o}^{\prime}}{Z_{\text {in }}+Z_{o}^{\prime}}=\frac{\bar{Z}_{\text {in }}^{\prime}-1}{\bar{Z}_{\text {in }}^{\prime}+1}
\end{aligned}
$$

$Z_{0}=50 \Omega$
$Z^{\prime}{ }_{0}=50 \Omega$
$Z_{L}=100 \Omega$
Length $=\lambda / 8$
$\Gamma_{\mathrm{L}}=$? $\Gamma_{\text {in }}=$?
What if Z^{\prime} o is 75Ω ?

1/3
$1 / 3\left(-90^{\circ}\right)$ only change phase !?!
$0.388\left(235^{\circ}\right)$

Voltage wave in transmission line

$$
\begin{aligned}
& V(x)=V_{o}^{+} e^{-j \beta x}+V_{o}^{-} e^{j \beta x} \\
& V(x)=V_{o}^{+} e^{-j \beta x}\left(1+\Gamma_{L} e^{2 j \beta x}\right) \\
& |V|=\left|V_{o}^{+}\right|\left|1+\Gamma_{L} e^{2 j \beta x}\right| \\
& \Gamma_{L} \equiv \rho e^{j \theta} \\
& |V|=V_{o}^{+}\left|1+\rho e^{j(\theta+2 \beta x)}\right|
\end{aligned}
$$

$$
|V|=V_{o}^{+} \sqrt{(1+\rho \cos (\theta+2 \beta x))^{2}+\rho^{2} \sin ^{2}(\theta+2 \beta x)}
$$

$$
|\mathrm{V}|=\mathrm{V}_{\mathrm{o}}^{+} \sqrt{1+2 \rho \cos (\theta+2 \beta \mathrm{x})+\rho^{2}}
$$

$$
|V|=V_{o}^{+} \sqrt{(1+\rho)^{2}-2 \rho(1-\cos (\theta+2 \beta x))}
$$

$$
|V|=V_{o}^{+} \sqrt{(1+\rho)^{2}-4 \rho \sin ^{2}\left(\frac{\theta+2 \beta x}{2}\right)}
$$

Voltage Standing Wave

$$
V(x)=V_{o}^{+} e^{-j \beta x}+V_{o}^{-} e^{j \beta x}
$$

standing wave
If $\quad\left|\mathrm{V}_{\mathrm{o}}^{+}\right|=\left|\mathrm{V}_{\mathrm{o}}^{-}\right|, \quad\left|\Gamma_{\mathrm{L}}\right| \equiv \rho= \pm 1$ perfect standing wave with nodes

$$
|V|=V_{o}^{+} \sqrt{(1+\rho)^{2}-4 \rho \sin ^{2}\left(\frac{\theta+2 \beta x}{2}\right)}
$$

min when $\frac{\theta+2 \beta \mathrm{x}}{2}= \pm \frac{(2 \mathrm{n}+1) \pi}{2}$
max when $\frac{\theta+2 \beta \mathrm{x}}{2}= \pm \mathrm{n} \pi$
$(x<0)$

$$
x=-[\theta \mp(2 n+1) \pi] \frac{\lambda}{4 \pi}
$$

$$
\mathrm{x}=-[\theta \mp 2 \mathrm{n} \pi] \frac{\lambda}{4 \pi}
$$

VSWR (Voltage Standing Wave Ratio)

$$
\begin{aligned}
& |V|=V_{o}^{+} \sqrt{(1+\rho)^{2}-4 \rho \sin ^{2}\left(\frac{\theta+2 \beta x}{2}\right)} \\
& V_{\min }=V_{o}^{+} \sqrt{(1+\rho)^{2}-4 \rho}=V_{o}^{+}(1-\rho) \\
& V_{\max }=V_{o}^{+} \sqrt{(1+\rho)^{2}}=V_{o}^{+}(1+\rho)
\end{aligned}
$$

$$
\mathrm{VSWR} \equiv \frac{\mathrm{~V}_{\max }}{\mathrm{V}_{\min }}=\frac{1+\rho}{1-\rho}=\frac{1+|\Gamma|}{1-|\Gamma|}
$$

$$
\text { perfect match: } \rho=0, \text { VSWR }=1.0
$$

$$
\text { open / short: } \rho=1, \text { VSWR } \rightarrow \infty
$$

It is an indicator on how well the load matches the line.
VSWR is the standing wave pattern INSIDE the line. Only Γ at the reflected junction that counts

Exercise

$$
\begin{aligned}
& Z_{\mathrm{o}}=50 \Omega \\
& \mathrm{Z}^{\prime}=75 \Omega \\
& \mathrm{Z}_{\mathrm{L}}=100 \Omega \\
& \text { Length }=\lambda / 8 \\
& \text { VSWR }=?
\end{aligned}
$$

Return Loss

$$
\begin{equation*}
R L \equiv-20 \log \rho \tag{dB}
\end{equation*}
$$

perfect match: $\rho \rightarrow 0, \mathrm{VSWR} \rightarrow 1.0, \mathrm{RL} \rightarrow \infty$
open / short: $\rho=1, \mathrm{VSWR} \rightarrow \infty, \mathrm{RL} \rightarrow 0 \mathrm{~dB}$

$$
\text { VSWR } \equiv \frac{1+\rho}{1-\rho}=\frac{1+|\Gamma|}{1-|\Gamma|} \longrightarrow \rho=|\Gamma|=\frac{\mathrm{VSWR}-1}{\mathrm{VSWR}+1}
$$

$$
\begin{aligned}
& \text { Typical VSWR }=1.1 \text { to } 2 \\
& \rho=0.048 \text { to } 0.33 \\
& R L=26 \text { dB to } 9.5 \mathrm{~dB}
\end{aligned}
$$

Stub

Transmission line connecting nowhere(?)

- Open stub

- Short stub
- Series stub

- Shunt stub

Open Shunt Stub

L-Band

Short Shunt Stub

20 GHz Interdigital Filter

Radial Stub

18 GHz
Rat Race

Tuning stub (open)

Short Stub

$$
\left(Z_{L} \rightarrow 0\right) \begin{aligned}
& \overline{\mathrm{Z}}_{\text {in }}=\frac{\overline{\mathrm{Z}}_{\mathrm{L}}+\mathrm{j} \tan \beta \ell}{1+\mathrm{j} \overline{\mathrm{Z}}_{\mathrm{L}} \tan \beta \ell} \\
& \overline{\mathrm{Z}}_{\text {sh }}=\mathrm{j} \tan \beta \ell \\
& \overline{\mathrm{Y}}_{\text {sh }} \equiv \frac{1}{\overline{\mathrm{Z}}_{\text {sh }}}=-\mathrm{j} \cot \beta \ell
\end{aligned}
$$

$$
\begin{gathered}
Z_{\text {coil }}=j \omega L \\
Z_{\text {cap }}=-j / \omega C \\
Z_{\text {sres }}=j \omega L\left(1-\frac{1}{\omega^{2} L C}\right) \\
Z_{\text {pres }}=\frac{1}{j \omega C\left(1-\frac{1}{\omega^{2} L C}\right)}
\end{gathered}
$$

period of π

Open Stub

$$
\overline{\mathrm{Z}}_{\mathrm{in}}=\frac{\overline{\mathrm{Z}}_{\mathrm{L}}+\mathrm{j} \tan \beta \ell}{1+\mathrm{j} \overline{\mathrm{Z}}_{\mathrm{L}} \tan \beta \ell}
$$

$$
\left(\begin{array}{l}
\left.\mathrm{Z}_{\mathrm{L}} \rightarrow \infty\right)
\end{array} \begin{array}{l}
\overline{\mathrm{Z}}_{\mathrm{op}}=-\mathrm{j} \cot \beta \ell \\
\overline{\mathrm{Y}}_{\mathrm{op}}=\mathrm{j} \tan \beta \ell
\end{array}\right.
$$

$$
\begin{aligned}
& Z_{\text {cap }}=-j / \omega C \\
& Z_{\text {coil }}=j \omega L \\
& Z_{\text {sres }}=j \omega L\left(1-\frac{1}{\omega^{2} L C}\right) \\
& Z_{\text {pres }}=\frac{1}{j \omega C\left(1-\frac{1}{\omega^{2} L C}\right)}
\end{aligned}
$$

peripd of π

Exercise

Find $Z_{\text {in }} \& \Gamma_{\text {in }}$.

$$
Z_{\text {sh }}=j Z_{\mathrm{o}} \tan (\beta \mid)
$$

$$
=j 75 \tan \left(45^{\circ}\right)=j 75 \Omega
$$

$$
Z=1 / Y=1 /(-j 0.006)=j 166 \Omega
$$

$$
\overline{\mathrm{Z}}_{\mathrm{in}}=\frac{\overline{\mathrm{Z}}_{\mathrm{L}}+\mathrm{j} \tan \beta \ell}{1+\mathrm{j} \overline{\mathrm{Z}}_{\mathrm{L}} \tan \beta \ell}=\overline{\mathrm{Z}}_{\mathrm{L}} \quad \mathrm{Z}_{\mathrm{in}}=\mathrm{j} 166 \Omega
$$

$$
\Gamma_{\text {in }}=\frac{\mathrm{Z}_{\text {in }}-\mathrm{Z}_{\mathrm{o}}}{\mathrm{Z}_{\text {in }}+\mathrm{Z}_{\mathrm{o}}}=\frac{\mathrm{j} 166-50}{\mathrm{j} 166+50}=1 \angle\left(107^{\circ}-73^{\circ}\right)=1 \angle 34^{\circ}
$$

Admittance ($\mathrm{Y}=1 / \mathrm{Z}$)

$$
\overline{\mathrm{Z}}_{\mathrm{in}}=\frac{\overline{\mathrm{Z}}_{\mathrm{L}}+\mathrm{j} \tan \beta \ell}{1+\mathrm{j} \overline{\mathrm{Z}}_{\mathrm{L}} \tan \beta \ell}
$$

$$
\overline{\mathrm{Y}}_{\mathrm{in}} \equiv \frac{1}{\overline{\mathrm{Z}}_{\text {in }}}=\frac{1+\mathrm{j} \overline{\mathrm{Z}}_{\mathrm{L}} \tan \beta \ell}{\overline{\mathrm{Z}}_{\mathrm{L}}+\mathrm{j} \tan \beta \ell}
$$

$$
\overline{\mathrm{Y}}_{\mathrm{in}}=\frac{1+\mathrm{j}\left(1 / \overline{\mathrm{Y}}_{\mathrm{L}}\right) \tan \beta \ell}{1 / \overline{\mathrm{Y}}_{\mathrm{L}}+\mathrm{j} \tan \beta \ell}
$$

$$
\overline{\mathrm{Y}}_{\mathrm{in}}=\frac{\overline{\mathrm{Y}}_{\mathrm{L}}+\mathrm{j} \tan \beta \ell}{1+\mathrm{j} \overline{\mathrm{Y}}_{\mathrm{L}} \tan \beta \ell}
$$

$$
Y_{\text {in }}=Y_{o}\left(\frac{Y_{L}+j Y_{o} \tan \beta \ell}{Y_{o}+j Y_{L} \tan \beta \ell}\right)
$$

$$
\begin{aligned}
& \Gamma_{\text {in }}=\frac{Z_{\text {in }}-Z_{1}}{Z_{\text {in }}+Z_{1}} \\
& \Gamma_{\text {in }}=\frac{1 / \mathrm{Y}_{\text {in }}-1 / \mathrm{Y}_{1}}{1 / \mathrm{Y}_{\mathrm{in}}+1 / \mathrm{Y}_{1}} \\
& \Gamma_{\text {in }}=\frac{\mathrm{Y}_{1}-\mathrm{Y}_{\mathrm{in}}}{\mathrm{Y}_{1}+\mathrm{Y}_{\mathrm{in}}}=\frac{1-\overline{\mathrm{Y}}_{\mathrm{in}}}{1+\overline{\mathrm{Y}}_{\mathrm{in}}}
\end{aligned}
$$

useful for shunt circuits

Earlier exercise

Earlier Exercise - power consideration

$$
\overline{\mathrm{Z}}_{\mathrm{in}}=\frac{\overline{\mathrm{Z}}_{\mathrm{L}}+\mathrm{j} \tan \beta \ell}{1+\mathrm{j} \overline{\mathrm{Z}}_{\mathrm{L}} \tan \beta \ell}
$$

$$
\begin{aligned}
& \mathrm{Z}_{\mathrm{o}}=50 \Omega \\
& \mathrm{Z}_{\mathrm{O}}^{\prime}=50 \Omega \\
& \mathrm{Z}_{\mathrm{L}}=100 \Omega \\
& \mathrm{~L}_{\mathrm{L}}=2 \text { th }=\lambda / 8 \\
& \Gamma_{\mathrm{L}}=1 / 3 \quad \Gamma_{\text {in }}=1 / 3\left(-90^{\circ}\right) \\
& \text { only change phase }
\end{aligned}
$$

$$
\mathrm{Z}_{\mathrm{in}}=\mathrm{Z}_{\mathrm{o}}\left(\frac{\mathrm{Z}_{\mathrm{L}}+\mathrm{j}_{\mathrm{o}} \tan \beta \ell}{\mathrm{Z}_{\mathrm{o}}+\mathrm{j} \mathrm{Z}_{\mathrm{L}} \tan \beta \ell}\right)
$$

$$
\Gamma_{\mathrm{in}}=\frac{\mathrm{Z}_{\mathrm{in}}-\mathrm{Z}_{\mathrm{o}}^{\prime}}{\mathrm{Z}_{\mathrm{in}}+\mathrm{Z}_{\mathrm{o}}^{\prime}}=\frac{\overline{\mathrm{Z}}_{\text {in }}^{\prime}-1}{\overline{\mathrm{Z}}_{\text {in }}^{\prime}+1}
$$

$$
\begin{aligned}
& \text { Power reflected =? }\left|\frac{\mathrm{V}^{-}}{\mathrm{V}^{+}}\right|^{2}=|\Gamma|^{2}=\left|\frac{1}{3}\right|^{2}=11 \% \\
& \text { Power delivered =? } 1-|\Gamma|^{2}=89 \%
\end{aligned}
$$

Don't double count reflection.... $\Gamma_{\mathrm{L}} \& \Gamma_{\text {in }}$
Return Loss $(R L)=-20 \log |\rho|=+9.5 d B$

High f circuit elements

1 GHz lumped element
Band pass filter

12 GHz lumped element Low pass filter much smaller

A small loop of thin wire is an inductor !!

High-Z Line as inductor

$$
\mathrm{Z}_{\mathrm{in}}=\mathrm{Z}_{1}\left(\frac{\mathrm{Z}_{\mathrm{L}}+\mathrm{j} \mathrm{Z}_{1} \tan \beta \ell}{\mathrm{Z}_{1}+\mathrm{j} \mathrm{Z}_{\mathrm{L}} \tan \beta \ell}\right)
$$

$$
Z_{1} \gg Z_{L}
$$

$$
\text { line length }<\lambda / 4 \quad(\pi / 2)
$$

$Z_{L} \sim Z_{o}$ (order of magnitude)
$Z_{\text {in }}=Z_{1}\left(\frac{\mathrm{a} \angle+\Psi}{\mathrm{b} \angle+\varphi}\right)=\left|\mathrm{Z}_{\text {in }}\right| \angle+\theta$
$Z_{\text {in }}$ has a positive phase
\rightarrow inductor-like !!!
small C, large L , series inductor

Low-Z Line as capacitor

$$
\mathrm{Z}_{\mathrm{in}}=\mathrm{Z}_{1}\left(\frac{\mathrm{Z}_{\mathrm{L}}+\mathrm{j} \mathrm{Z}_{1} \tan \beta \ell}{\mathrm{Z}_{1}+\mathrm{j} \mathrm{Z}_{\mathrm{L}} \tan \beta \ell}\right)
$$

$Z_{1} \ll Z_{L}$
line length $\ll \lambda / 4$ ($\pi / 2$)
$Z_{L} \sim Z_{o}$
$Z_{\text {in }}=Z_{1}\left(\frac{\mathrm{a} \angle+\varphi}{\mathrm{b} \angle+\Psi}\right)=\left|Z_{\text {in }}\right| \angle-\theta$
$Y_{\text {in }}=\left|Y_{\text {in }}\right| \angle+\theta$
$Y_{\text {in }}$ has a positive phase
\rightarrow capacitor-like !!!

Low pass filter

5 GHz low pass filter

14 GHz low pass filter high-low impedance lines waveguide high power low loss

High-Low-Z lines

20 GHz band pass filter high Z lines \rightarrow inductors Short shunt stubs $\lambda / 4$ resonators

13 GHz coupler
Tuning with stubs (shunt open)
Think of them as shunt capacitors
\rightarrow low Z lines

Homework

1. A 100Ω tranmission line has an effective dielectric constant of 1.65 . Find the shortest open-circuited length of this line that appears at its input as a capacitor of 5 pF at 2.5 GHz . Repeat for an inductance of 5 nH .
2. A radio transmitter is connected to an antenna having an impedance $80+\mathrm{j} 40$ Ω with a 50Ω coaxial cable. If the 50Ω transmitter can deliver 30 W when connected to a 50Ω load, how much power is delivered to the antenna?
3. A 75Ω coaxial transmission line has a length of 2 cm and is terminated with a load impedance of $37.5+\mathrm{j} 75 \Omega$. If the dielectric constant of the line is 2.56 and the frequency is 3 GHz , find the input impedance to the line, the reflection coefficient a the load, the reflection coefficient at the input, and the SWR on the line.
4. The VSWR on a lossless 300Ω transmission line terminated in an unknown load impedance is 2.0, and the nearest voltage minimum is at a distance 0.3λ from the load. Determine (a) Γ_{L}, (b) Z_{L}.
5. Calculate VSWR, ρ, and return loss values to complete the entries in the following table.
6. Measurements on a 0.6 m lossless coaxial cable at 100 kHz show a

VSWR	ρ	RL (dB)
1.00	0.00	∞
1.01		
	0.01	
1.05		32
		30
1.10		
1.20		
	0.10	
1.50		
		10
2.00		
2.50		

