

Project on

NoSQL

under the guidance of

Professor Rakesh Ranjan

Submitted on

05/09/2011

Submitted by

 Ishaan Sutaria <ishaansutaria@gmail.com>

Gina Kang< ginak1004@gmail.com >

Batch: Monday (6:00 pm - 8:45 pm)

Table of Contents:

1. Introduction.

2. CAP Theorem.

3. Categories of NoSQL.

 3.1 Wide Column Database.

 3.2 Document Based Database.

 3.3 Key-Value Pair Database.

 3.4 Graph Database.

 4. Disadvantages.

 5. Conclusion.

 6. References.

1. Introduction

In the computing system, there are enormous data that comes out every day from the web. A

widespread system to handle those data was relational database management systems, RDBMS,

but with changing of trends to various social networks, there came out another system to handle

the data that changes very rapidly. All the database store system is applied by CAP theory which

stands for Consistency, Availability, and Partition Tolerance. Consistency means “All clients

always have the same view of the data” and Availability means “Each client can always read and

write” and Partition Tolerance means “The system works well despite physical network

partitions.” For all of the database storage, they could take only two of those characteristics.

Existing RDBMS takes Consistency and Availability but it can’t be applied to Partition

Tolerance. So the NoSQL takes Partition Tolerance with giving up either Consistency or

Availability. To make it work, it gave up relational database and takes only things that it needs

for each functions.

2. CAP Theorem:

Eric Brewer at the AMC symposium gave a lecture on principles of distributed computing

proposed the CAP theorem in July 2000.

According to the CAP theorem proposed by Brewer also known as Brewer’s theorem no

distributed system can guarantee the following all three properties simultaneously,

 Consistency means all the nodes in a system should contain the same data.

 Availability means that the data should be available from the remaining nodes even if

some nodes in a system fail.

 Partition Tolerance means that he can even if there is arbitrary message loss the systems

continue to operate.

Brewer’s proposed that out of these three only two of them can be guaranteed by a system. This

was proved formally by Seth Gilbert and Nancy Lynch of MIT in 2002.

“Each node in a system should be able to make decisions purely based on local state. If you need

to do something under high load with failures occurring and you need to reach agreement, you’re

lost. If you’re concerned about scalability, any algorithm that forces you to run agreement will

eventually become your bottleneck. Take that as a given.”

—Werner Vogels, Amazon CTO and Vice President

3. Categories of NoSQL:

3.1 Wide Column Database:

Column-oriented database systems (column-stores) have attracted a lot of attention in the past

few years. Column-stores, in a nutshell, store each database table column separately, with

attribute values belonging to the same column stored contiguously, compressed, and densely

packed, as opposed to traditional database systems that store entire records (rows) one after the

other. Reading a subset of a table’s columns becomes faster, at the potential expense of excessive

disk-head seeking from column to column for scattered reads or updates. One of the most-often

cited advantages of column-stores is data compression. The intuitive argument for why column-

stores compress data well is that compression algorithms perform better on data with low

information entropy (high data value locality).

In wide column databases data is stored in columns instead of rows. The major advantages of

row based database i.e. RDBMS, SQL etc is that they ensure consistency Isolation, Atomicity,

Dependability i.e. ACID properties. One of the major advantages of using row based databases is

that it is extremely easy to modify a record we modify a row in a table. One of the major

disadvantages is that it offers poor scalability. The advantages of wide coloumn databases are

that it is distributed and highly scalable. Wide column database also has disadvantages like it is

slow as compared to row based databases when it comes to multi column writes. According to

one of the research paper named Column stores vs. Row Stores by Abadi, Maden and Hacchem

row schema averaged approximately six times slower than column based designs when it comes

to time taken for querying the data. Also Row store with column schema averaged approximately

2.5 times slower. One of the most-often cited advantages of column-stores is data compression.

The intuitive argument for why column-stores compress data well is that compression algorithms

perform better on data with low information entropy (high data value locality).

Types:

Some of the most important and famous wide column databases are as follows

 Haddop/ Hbase

 Cassandra

 Hypertable

 Clouddata

 Cloudera

 Amazon Simple DB

Compression:

In wide column databases there is an increased opportunity to store in column store. There is a

tradeoff between I/O operations for CPU cycles. Here techniques like run length encoding are far

more useful. The locality of data in column stores is much higher. It can even use the extra space

made available through compression to store multiple copies of data in different orders

Applications:

There are many applications of column databases. Some traditional ones areas where they are

useful are data warehousing which includes high end clustering and personal analytics, business

intelligence and data mining e.g. proximity and information retrieval. Another promising

application of column databases is scientific data management, where we need to showcase some

results. There is also some recent work going on in addressing alternative data models such as

object data models, array data models, XML and RDF using column stores. The practical

applications where these are used are facebook, twitter, Netflix etc.

3.2 Document Based Database:

One of the first questions that come to people’s minds specially those who have worked or have

experience with relational databases is what document based storage is? It is basically an

organization that provides flexible data creation where fields can be dynamically added and the

ones which are not required can be constrained. Here the schema or design migrations are

application and not data driven.

From the perspective of relational databases (Table based) here tables and columns define

grouping, attributes and constraints. Schema migration required as data evolves and hence it is

data driven and not application driven.

Document storage NoSQl implementations are a cross between a KVP(Key Value Pair) and

record structure paradigms. There are many enhancements to the structure that can be done like

dynamic restructuring of the schema and representation of non structured data. It is even possible

to enhance the KVP by grouping of KVP to form records that gives a structure to KVP lack of

organization. Another enhancement that can be done is to not enforce any schema at the database

level. It should be followed at the document level which is one of the strengths of document

storage model. Here the important thing to understand is that the application must provide the

validation. Another major advantage of document based storage is that it provides on the fly

structural changes and has tolerance for variations in organization and attributes.

Normalization plays a big role in RDBMS and plays a big role in providing many of the benefits

like consistency, Isolation etc. Document based database in particular MongoDB supports

application enforced normalization through design. But even denormalization has its own

advantages.

Types:

There are many types of databases which comes under this category. They are as follows

 Couch Db

 Mongo Db

 Terrastore

 Through db

 OrientDb

 Raven Db

We have taken an example MongoDB to explain things in much detail and which will make

things lot more clear and better your understanding of document based storage.

MongoDB

In MongoDB databases are independent storage areas in a mongo server, providing separate

security, configuration and a database which consists of multiple applications. Here collections

are sets of documents where the maximum amount of records that can be stored is 24,000. These

records are indexable and are shared and replicated. Here if you want you can keep the collection

can be of fixed size. They are performance oriented for caching and maintain insertion order.

Documents are the records or the data and are have a client server communication which uses

BSON and the maximum size of the document is 16Mb and many types are supported.

BSON is binary encoded JSON and supports JSON like data with certain enhancements for date,

byte array and binary data. There are certain tradeoffs when using BSON like encode and decode

speed advantages and embedded string length and bound string queries.

Data Representation:

Here data is a document and we call it a record. It is basically a set of key value data.

 For e.g. “number”: [“123”, “45”, “345”]

Here a fields value can even consists of an array of data and elements can be single values or

data objects. There is also surrogate keys available which are managed by the application layer

ad are generated by Mongo.

Identifying documents in Mongo is by checking the _ifd field as all documents are stored in

Mongo has an _id field and it is assigned by the application and the default assignment by

mongo is a 12byte id which progressively increases as documents are added.

Querying in MongoDB:

Queries are expressed as JSON (BSON) and are organized very similarly to SQL statements.

Notation: Basic Key/Field : Value/Range Queries

example: db.[collection].find({“number” : “123”})

3.3 Key-value store

Key-value store is one of the methods that allow the application to store its data without schema.

Generally it stores string which consists of key and the actual data so it doesn’t need any

formatted data model. Arbitrary data could be stored with any order with indexing single key

which allows retrieval. So the advantage for that is fast storing but the retrieving speed should

be considered to be improved. Another advantage is when everything is emerged according to

the key values; the result code looks very clean and simple.

Types:

 Azure table Storage

 MEMBASE

 Riak

 Redis

 Chordless

 GenieDB

 Scalaris

 Tokyo Cabinet

 G.T.M

 Berkeley DB

Tokyo Cabinet

The Tokyo Cabinet is one of the databases using the key value store developed by Mixi

Inc in Japan. It is programmed in C using hash table, B+tree, or fixed-length array and provided

as application program interface of C, Pearl, Ruby, Java, and Lua. They showed the biggest

advantage, speed of store, that when they stores 1 million records, it takes only 0.7 seconds for

the regular hash table and 1.6 seconds in the B-Tree engine. Also in case of that it is not enough,

it supports for Lempel-Ziv or BWT compression algorithms which reduces the size of database

up to 25%. Tokyo cabinet is successive version of GDBM and QDBM improving some points.

It improves space efficiency, time efficiency, parallelism,

usability, robustness and it supports 64-bit architecture.

 Hash database engine has one key and one value

without any duplicates and it is crazy fast. B-tree

database works same with hash database functionally,

except using the underlying structure which makes the keys could be ordered by user so the user

could do prefix , range matching on a key and traverse entries in order. The structure of the B-

tree index is shown in the figure 1. It consists of bunch of leaves which is the location to store

the data. The top point which starts the tree is root and there are bunch of nodes called children

under the root and number of node under each

Figure 1: B-tree index node is order and each level is called depth. Mostly, I/O is

very expensive to do in a computer system and B-tree index helps to store data in efficient way.

Whenever the I/O process, it only takes time to move to a lower depth in the tree using the

indexes of the tree. So depends on the number of depth it could help to reduce the time to

retrieve the data.

Another database engine is fixed-length engine which is just simple array. It doesn’t

have hashing so it only access through the natural number keys so it can’t be any faster. At last,

very strong engine, Table engine is also one of the methods that Tokyo cabinet used. Its

structure is very similar to the relational database, but doesn’t need to have predefined schema.

User can declare arbitrary indexes on their columns and also they can queries the data.

 Also Tokyo Cabinet has a package of network interface, called Tokyo Tyrant written in

the C language. Tokyo cabinet has high performance but it couldn’t cover the case when

multiple processes share the same database, but Tokyo Tyrant does. Tokyo Tyrant supplemented

Tokyo Cabinet for the concurrent and remote connections.

 They also provide Ruby friendly version, Rufus-Tokyo, which interacting with Tokyo

Cabinet and Tokyo Tyrant. Comparing two version, Tokyo cabinet and Rufus-Tokyo, Tokyo-

cabinet is much faster. Tokyo cabinet hash takes 7.19s when Rufus hash takes 18.38s and Tokyo

cabinet B-tree takes 11.92s when Rufus B-tree takes 21.93s.

BerkeleyDB

 Berkeley DB is one of the big computer software libraries that is embedded database

using key and value data. It is developed from Berkeley to manage the database in Berkeley and

later, to manage more formally, SleepyCat took over it to develop and distribute in 1996. In

2006, it is merged to Oracle. This DB is used widely because it is easy to use and the

performance is also good and it can be realized easily without bug. It is written in C and

supports C, C#, C++, PHP, Java, Perl, Python, Ruby, Tcl, and Smalltalk APIs. It uses various

methods like, extended linear hashing, B+tree, queue, fixed and variable length record access

method. It doesn’t have the concept of query language like SQL or table, but it supports locking,

transactions, logging and Join, replication and in-memory databases.

 BerkeleyDB uses main 4 access methods, B+tree, Hash, Queue and Recno. B+tree and

hash have been explained above and both of them could have multi data key. Queue is storing

the data in the queue that is fixed-length of record. This was developed to insert data at the end

quickly. So this is very useful for the big application that its data should be updated

simultaneously. The logical record is used as a key. Last method, Recno stores data in the

variable-length record and the logical record is used as a key like queue. It retrieves and updates

the data by record number. It can also load a text file into a database and it reads each line

treating records. So like text editor, it could search very fast by line number. Recno is

developed on top of the B+tree access method and stores the sequentially-ordered data values. So

the programmer’s point of view, they number the data from one sequentially and later, whenever

the data is added or deleted, if updating data is lower number records, then it automatically

renumbers. It supplemented queue’s faults, but because it is using variable-length record, it also

has lots of loads.

 When not much data needed to be stored so it is loaded in the memory, there is no big

difference of performance between B+tree and Hash. But when there is huge data that need to

be loaded in the disk, the performance could have big difference between those two. Most of the

case, B+tree work ok, but if the data set is huge, then we need to consider the Hash too. Also

when the system uses parallel operation many times, then the queue or Recno is more proper.

Still, BerkeleyDB has some disadvantages on some functions. Using the Mutexes, it has disadvantages

that in care of lock intensive, it could hold a lot of instructions blocking the parallelism. Also there is

bunch of advantages using only key/data pairs, but at the same time there is obvious disadvantages for no

locking, transactions, or replication which is that no concurrent access by readers or writers.

3.4 Graph database

Lastly, most complicated database of NoSQL is graph database This model consists of

labeled information and the direction about the information. The object-oriented

programmer could think nodes as objects to understand which represents entities. The

properties are related information to the nodes. Nodes are connecting lines between nodes

to nodes or nodes to properties and it stores information about the relationship between

those two. The graph database is the one that uses smallest size when they stores data but

also it is most complicated databases. The graph theory could represent the relationship

between various domains very usefully and reliably. Many algorithms like shortest

distance search, Pagerank, HITS and eigenvector centrality were used for the

applications.

Types

 Neo4j

 Infinite Graph

 Sones

 InfoGrid

 Trinity

 Hyper Graph DB

 Big Data

 DEX

 VertexDB

Neo4j:

 Most famous database engine of graph database is Neo4j which is open-source and

commercial engine implemented in Java developed by Neo Technology. It has bindings to

Python, Ruby, Clojure, Scala, Java object mapping, Groovy and PHP. Also those bindings come

with a REST extension. As it says above, it uses store structure which stores data in graphs

rather than in tables. It is very useful for web development like tagging, metadata annotations

and social networks. It is using disk-based which maximizes the performance and scalability.

Neo4j’s scalability is very massive as much as it could handle billion of each node, relationship

and property for single machine.

 Addition to the designing for network-oriented data, it also works to handle semi-

structured data. As a name of it, semi-structured data has few requirements to be structured but

rests of them are optional attributes. So sometimes the structure could be very dynamic which

varies even between every single element. Generally data with a lot of variance could be hard to

be represented in relational database schema but Neo makes it able to represent. Neo is robust

database. It supports for JTA, JTS, 2PC and so on.

 As a graph database, it consists of nodes, relationships and properties as shown in the

Figure 2. To represent the

network, it is similar to the

APIs of object-oriented

math libraries. Most of

cases, the system has more

information in the

relationships rather than in

the nodes themselves. The

Neo

Figure 2: Example of graph database capture the value of a

network in the connections.

 To traverse databases, Neo doesn’t use declarative queries, but uses method used for

navigational database which navigate through the nodes and relationships for queries. Instead of

using API that could be used generally which is laborious and complex, it has powerful traversal

framework. It is Java Iterator which traverses with four basic components; the starting nodes,

the relationships, stop criteria and selection criteria.

 There are several benefits on Neo model rather than the relational model. If the

application has domain with naturally ordered data this is very good application to be used,

because it is very useful to traverse over the domain data. Also whenever the semi-structured

data is used, Neo knows it very easily. The system prefers individual structure avoiding

centralization. So in the web now, semi-structured data is already increasing day by day. But

the problem is that relational database almost impossible to handle this kind of model, but Neo

could handle this mode very easily and efficiently. In business layer, schemas are evolving very

quickly and the characteristics of Neo make it follow those variances which are very flexible and

forgiving attitude towards properties. This helps to develop refactoring rapidly and iterate

shortly for agile methodologies. So at last, the Neo has the advantages which is shorter

development times, higher performance and lower maintenance.

 But even though it has many advantages, it still has problems to be solved. First of all,

Neo is still working on to standardize the model to be used very alternatively but still it is lack of

alternative implementation. Also they are developing some embedded tools to support for Neo

but still there are much more tools that could support relational databases better. Neo is the

database engine that concentrates on the navigational model as semi-structure. Of course, they

also support for structured data too, but still it can’t handle arbitrary queries as much as relational

database does. Neo has hardness to traverse along the relationships in the node space for some

kind of queries. To cover little bit of those problems, they developed search engine integrating

for arbitrary property lookups.

4. Disadvantages

The main disadvantage of NoSQL is that there is absence of SQL. As SQL databases have been

present for such a long time and people are so used to it that transitioning would be a big

problem. There is a big learning curve which can create a big hindrance in more people taking it

up. NoSQL is more useful for large unstructured data but for applications where there is not very

large quantities of data and it is more or less structured there is not much performance difference

and it is better to use RDBMS rather than NoSQL databases.

5. Conclusion

 With new idea, a tremendous system has been developed and it leads the database system

for many areas. They don’t want to be called as a database anymore but like partition storage

system for structured data management. NoSQL handles enormous data pouring out of web and

that could be done using very cheap PC server. Also it could solve the problem of bottleneck

phenomenon with avoiding some complex steps to manage the data. It aims to get only as much

as they need. But even with these advantages, it has some drawback that they need to concern

about. Depends on how they approach those problems, next generation would be changed.

6. References

http://stackoverflow.com/questions/1245338/what-nosql-means-can-someone-explain-it-to-me-

in-simple-words - disadvantages

http://fallabs.com/tokyocabinet/ TokyoCabinet, TokyoTyrant

http://www.igvita.com/2009/02/13/tokyo-cabinet-beyond-key-value-store/ TokyoCabinet

http://www.usenix.org/event/usenix99/full_papers/olson/olson.pdf - BerkeleyDB

http://en.wikipedia.org/wiki/Graph_database - graph database

http://dist.neo4j.org/neo-technology-introduction.pdf - neo technology

http://blog.neo4j.org/2010/02/top-10-ways-to-get-to-know-neo4j.html - neo4j

http://cs-www.cs.yale.edu/homes/dna/talks/Column_Store_Tutorial_VLDB09.pdf - Wide Column

Database

http://nosql.mypopescu.com/post/573604395/tutorial-getting-started-with-cassandra -Wide Column

Database

http://www.mongodb.org/display/DOCS/Tutorial#Tutorial-LimitingtheResultSetvia{{limit%28%29}} –

Document Database

http://stackoverflow.com/questions/1245338/what-nosql-means-can-someone-explain-it-to-me-in-simple-words
http://stackoverflow.com/questions/1245338/what-nosql-means-can-someone-explain-it-to-me-in-simple-words
http://fallabs.com/tokyocabinet/
http://www.igvita.com/2009/02/13/tokyo-cabinet-beyond-key-value-store/
http://www.usenix.org/event/usenix99/full_papers/olson/olson.pdf
http://en.wikipedia.org/wiki/Graph_database
http://dist.neo4j.org/neo-technology-introduction.pdf
http://blog.neo4j.org/2010/02/top-10-ways-to-get-to-know-neo4j.html
http://cs-www.cs.yale.edu/homes/dna/talks/Column_Store_Tutorial_VLDB09.pdf
http://nosql.mypopescu.com/post/573604395/tutorial-getting-started-with-cassandra
http://www.mongodb.org/display/DOCS/Tutorial#Tutorial-LimitingtheResultSetvia{{limit%28%29}}

