

Integration of Enterprise Applications

Research Project

Submitted By:

Team - Enteurs

Name Student ID Mobile Email
Anuragh Reddy Gade 007224308 925-406-4034 anuraggade@gmail.com

Anirudh Mittal 006491563 408-449-1849 Anirudh.mittal89@gmail.c
om

Gowthami Chekkara 000165478 408-416-3638 School.gow@gmail.com

Submitted To:

Prof. Rakesh Ranjan

Submission Date:

05/09/2011

Abstract

 In this paper we propose a solution to
integrate Immigration related Enterprise
applications of various countries to
communicate with each other. For this
communication to take place we need to
provide a rule based routing and mediation
engine using Enterprise integration patterns.
We have used an open source
implementation of Enterprise integration
patterns which provides a basic framework
for various enterprise applications to
communicate with each other with type-safe
smart completion of routing rules in your IDE
using regular Java code without huge
amounts of XML configuration files. In this
paper we present the existing techniques
and also compare it with our solution which
makes the integration among the enterprsie
applications in general and in specific for our
enterprise application feasible for a
developer without any concern to the
mediation rules, routing and implementing
the enterprise integration patterns.

I.INTRODUCTION

Various communication models are used to
implement the communication between the
Enterprise applications using some
mediation rules and with the implementation
of Enterprise Integration Patterns. Enterprise
Integration Patterns (EIP) represents
possible design solutions that may be used
to make the communication between
enterprise Applications possible. Leveraging
the power of Internet and building on XML
permit systems to share information provide
communication and invoke other system
functions irrespective of their programming
language, operating system or hardware
platform. Developing integration solutions,
however, remains a difficult task for the
designers, who may leverage design
knowledge available in the form of
Enterprise Integration Patterns.
Conversations among Enterprise

applications, properly designed, can
guarantee consistent and reliable execution
of integrated systems .long running
conversations can be supported through
available communication protocols like
SOAP[1].

Message routing is the foremost functionality
for an Enterprise application as it provides
the fundamental capacity to support
intelligent interconnectivity between service
requestors (or consumers) and service
providers, and by using it as the
communication backbone, the interactive
topology between services can be simply
point to point, and also multi-point to multi-
point in complex situations. Since the
invocations are independent of the service
location and the involved protocols, they can
be dynamically located and invoked, which
is important for communication in enterprise
applications. Existing design approaches for
application integration neither provide
mechanisms for designers to select
appropriate EIP for integration problems nor
do they provide mechanisms to generate
appropriate integration model. Even if the
applications are integrated using the EIP in
future it becomes a problem when
considering the scalability of the application
to use different design patterns, in such a
case the entire conversational model has to
be changed which becomes a heavy tedious
task for the developer and in terms of cost
as well[1].

For the integration to be carried out with
enterprise applications we are proposing a
solution that takes care of the routing
mechanism and mediation rules. We would
explain the integration by considering the
integration of the immigration system of
various countries and the patterns required
for the integration along with the open
source integration framework called Apache
Camel which takes care of the Mediation
rules, routing(like JMS,Message Queues
etc) and implementation of the Enterprise
patterns required for the applications to be

integrated. We put forth the case study in
which we have used Apache camel as an
open source integration framework that used
spring web services to provide platform
independence [1].

 2. BACKGROUND

2.1 Review of the present Integration
Solutions

Firstly, Web Sphere Integration Developer
developed by IBM, enables designers to
wrap individual Systems as web services
and choreograph them into business
processes. The tool provides an integrated
development environment to design and
deploy integrated systems. It does not,
however, suggest any integration strategies,
and includes several dependencies on
proprietary servers and modeling tools [1].

Secondly, iWay service-oriented adapters
developed by iWay software, enable the
designers to develop web services as
adapters for ERP (such as
Microsoft, Oracle, SAP, BEA, IBM, Siebel,),
and join them into an integrated business
process. It does not suggest any integration
Strategies either [1].

Thirdly, Artix, developed by IONA
Technologies, enables designers to develop
web services adapters for legacy systems
and integrate them using a hub and spoke
approach. It claims to provide flexible and
incremental integration approach (which
may be considered an integration strategy)
but does not extend support for developing
conversation policies among the Enterprise
applications [1].

Other Solution, BEA Aqua Logic Service
Bus, designed by BEA, provides a service-
oriented integration infrastructure which is
based on web services techniques. BEA
claims that this enabled the designers to
design, integrate, deploy and manage
systems exposed as web services. The tool,
instead, does not propose any specific

integration strategies nor does it support
conversation policies among services as an
implementation mechanism for the
integration of enterprise software
applications [1].

The above review of the present integration
solutions for the integration of enterprise
applications reveal that none of the
commercial solution providers/open source
providers provide any actual integration
strategies. None of the provides explicitly
support for the implementation mode we
suggest in the application integration. The
review highlights the essential need for tool
that is independent in using the approaches
to designing integration solutions.
Integration designers need a tool that gives
assistance to guide them with selection of
appropriate integration strategies for a given
task, and support generation of
implementation mechanisms such as
conversation policies for the implementation
of various communication models that utilize
the enterprise integration strategies for the
integration of the enterprise applications [1]
[2].

2.2 Role of Enterprise Integration
Patterns (EIP) in the integration process.

Patterns play an important role in analysis
and design and development of any
software systems. A pattern is domain
independent concept of common design
structure that is proposed for recurring
design problem. Each pattern describes
when it can be applied, its design
constraints, consequences, trade-offs of
applying it in a particular context of
developing software applications. A pattern
does not provide complex code
implementation, but rather help designers in
describing and communicating design
problems and solutions in a particular
context of the integration process in specific
or in the development process of the
application in general [1][2].

When related patterns are framed together

captures the relationship between solutions
and problems in the specific context.
Patterns and pattern languages together
guide the designers through several
decisions during software development and
thus help the developers resolve the issue of
conflicts in the specific context [1] [2].

In the domain of Enterprise Integration,
Hohpe and Woolf have developed patterns
that capture recurring design solutions for
integration problems in real-time. These
patterns are abstract i.e. they do not provide
any implementation code or snippets in the
integration process Instead, they provide
solutions that help designers map
integration problems against various
possible integration strategies. They provide
a real time match with the web services
platform because they follow a message-
oriented integration approach [1] [2].

All the Enterprise Integration patterns use
the support of the messaging system.Hohpe
and Woolf suggest 65 Enterprise Integration
Patterns (EIP) organized into the following
several categories: integration styles,
channel patterns, message construction
Patterns, endpoint patterns, routing patterns,
transformation patterns, and system
management patterns. No methodologies
exist, however, to guide designers with
selection of pattern(s) and construction of a
solution for a given problem during the
integration of the enterprise applications. All
the patterns support the developers to
resolve the conflicts in the context of
integration [1].

2.3 DSL Route: Role in the context of
Enterprise Integration.

DSL route provides fluent and best route
definition. With DSL routes, the integration
solution for the enterprise applications in
specific and software applications in general
are more agile and configurable since
enterprise integration patterns (EIP) are
naturally and in real time supported in DSL
route model.Enterprsie Integration has to
use the messaging system that provide

important functionalities for reliable message
s

Route proposes to improve the current
messaging system [2] [1].

Messaging system have been widely used in
SOA infrastructure since it can make
applications more loosely coupled by
asynchronous communication, which also
makes the connection reliable as the
applications need not have to be running at
the same time[1].

Enterprise Service Bus (ESB) is introduced
as the infrastructure to build and deploy the
highly distributable applications and
integration of those applications which is
indeed a backbone for a SOA.It provides the
integration platform that combines
messaging system, data Transformation,
service, and intelligent routing, and provides
reliable efficient connection and coordination
between diverse cross platform services.
ESB provides four major functionalities:
event handling, message transformation,
protocol mediation and message routing
between service provider and customer and
have been reputed as the next generation
integration software which is used in the
SOA as well as for the integration of
enterprise applications[1][2].

Enterprise integration is inherently and
widely complex when applying to
heterogeneous platforms, integrating diverse
software applications and complicated
business processes. One of the major
stumbling blocks is the lack of a common
pattern and knowledge of asynchronous
messaging architecture used to build
Enterprise integration solutions. All the 65
Integration patterns suggested by Hohpe
and Woolf act as great resource in the
integration process[1][2].

2.3.1 DSL content based routing module

Most of the Enterprise Software products
support the dynamic route path by using
content-based routing (CBR), which is

Known to be an intelligent routing. CBR
enables the routing path to be changed at
runtime depending on the message content
to be communicated. XML is the
intermediate message that provides the
mediation between diverse data structures
and formats as the messages are
communicated between various enterprise
applications in general and in specific to our
application. In CBR, ESB determines the
path the message to be routed by examining
the message content. The routing should be
determined based on a number of criteria,
such as the specific field value, message
type, existence of fields. XPATH is the
language for exploring the XML
document[1][2].

Fig 1: DSL-CBR on ESB

ESB routes the message to Service a in
Step 1, and then gives the message out of
Service a using a CBR module, which
dispatches the message to three
destinations: Service B, Error Queue or
Message Transformation module before
Service B. The ESB configuration file is an
XML document which describes all the
connections among the service providing
components of the SOA application. During
execution, the ESB routes the
messages[1][2]

Exactly as specified according to the
information in the configuration file.CBR is a
frequently used routing mechanism which
belongs to predictive routing. CBR has
knowledge of all the possible recipients. As
recipients are added, removed, or changed,
the Content-Based Router has to be
updated every time. Therefore, by using

solution for varying diverse integration
scenarios of the enterprise applications[2].

Domain specific language is a specification
language dedicated to a particular problem
domain and we use it to represent the
integration patterns and replace the XML
configuration in the integration process.
Most of Enterprise Integration Patterns are
abstracted into a function in DSL model. For

the source and destination of the messages
among various applications as a part of
messaging process[2].

Fig 2: DSL based configuration for the
CBR module shown in Figure 1.

In this paper DSL has been utilized as a part
of the enterprise integration process using
the open source integration framework
called apache camel, which provides much
easier ways to build and reconfigure the
message routing path in our integration
works.

 3. EIP SAMPLE

Fig: 3 Sample Process of Enterprise

Integration Pattern

In the above sample, when producing a
message, the sender may set an expiration
time for it and then route it into a particular
Message Channel as in the above figure.
Message Channel is a basic component in
EIP definition, where one application writes
information containing the message to be
communicated to the channel and the other
one reads that information from the channel.
It will try to deliver it to the intended
recipient. This delivery operation may
execute for several times because the
receiver may not be online when the
message has arrived or the message may
expire before successful delivery, so a Dead
Letter Channel is prepared to deal with all
the non arrived message to ensure that the
message can be managed in a reliable
process preventing the loss of
communication during the enterprise
integration process. The above figure shows
the corresponding patterns in the description
[1][2].

3.1 Integration Problem Specified
in this paper

Introduction

In this paper we have taken the integration
problem corresponding to the immigration
systems of various countries. The
immigration systems have to mutually
communicate with each other to verify the
authenticity of a person entering the country,
also there is a very need to pull up the
background information corresponding to
the person immigrating to a different
country. During the verification process we
need a sort of communication or enterprise
integration pattern implemented to take care
of routing the messages and mediation
logic. We propose a solution to the
integration mechanism by implementing the
enterprise integration patterns related to the
integration of immigration systems of various
countries in agreement.

Need for Integration of Distributed
Immigration Systems. In this we have the
need to integrate diverse immigration
systems to verify the authenticity of the
people immigrating to other countries. Let us
consider the example of American 09/11
attacks. If American government had the
chance of communicating with the
immigration systems of various counties and
pulled up the background information of the
people travelling in the plane then it would
have certainly prevented the attack on WTC.

The reason why there is a delay in the
communication of pulling up the information
is due to lack of proper integration between
the immigration systems that provide the
criminal background of the people from the
country where they are travelling.

3.1.1 Existing and proposed
System

In the existing system if the immigration
officer has to verify the authenticity of the
person travelling or immigrating to their
country they need to manually put a request
to the country where the person belong to
and thus have to wait for the response from
them. This turned out to be a major
drawback to the countries effected by
terrorism where in they could not proceed on
any action against the people they suspect.
This also turned out a great hassle on those
who are innocent because the immigration
officers may not release or set free the
people who are in suspicion.

 The proposed system is in such a way that
the immigration systems of various countries
automatically pull up the information while
the person is immigrating to a different
country providing the complete and
confidential information to the officers in
charge of the immigration system making
them to take up wise decisions. There might
be some legal issues as well that can be
negotiated with some agreements between

countries and thus considering the safety as
a priority.

3.1.2 Hurdles in the Proposed
System

The Integration of the Immigration systems
is considered to be a complex process
because different countries have a different
implementation of the immigration systems.
This implementation varies from the simple
implementations to complex solutions.
These are considered to be Enterprise
solutions as they have wide range of use for
protecting the security of the country at large
and having the background information of
the citizens of the country in specific.

To integrate these systems at large we need
to propose and verify several enterprise
integration patterns and provide routing and
mediation logic implemented to integrate all
the systems. We also need to consider the
scalability of the systems as when a country
changes its implementation of the
immigration policies then they need to be
reflected in the integration process as well.

To take care of these routing, mediation
logic, implementation of enterprise
integration patterns we need a concrete tool
that would provide the integration process,
provide the mediation logic and take control
of the routing mechanism thus providing the
implementation of enterprise integration
patterns. We propose a solution to this
integration process by using a open source
framework called Apache camel as an
Integration tool that implements the
Enterprise integration patterns specified in
the integration process for all the
Immigration systems.

3.2 Role of Apache Camel in the
Integration Process

What Apache camel is

Many companies use different applications
within the organization or outside the
organization. For example, their client might
be having different application than their
organization setup. Thus, many companies
spend a lot of time and resources to figure
out how will they be able to communicate
with the other applications, and if they are
successfully able to communicate with the
application, will the information be rendered
in the way it should be rendered. Thus,
many companies forget to spend time on the
business tier of their application and end up
spending more time in setting up the
connectivity between different applications.
Thus, Apache came up with a product called
Camel that solves this integration problem
and helps the organization to spend more
resources on their business logic.

The name Camel represents transfer of data
from one application to another, as known
that Camel helps in transferring of goods
from one place to another. Thus, camel is a
basically a routing library that uses various
integration patterns that helps in transferring
of information from one application to
another application. Since, it a routing
library, it is a very light weighted and does
not need any installation and can be easily
plugged in. The Apache Camel integration
framework is based on java programming
language.

Commonly the enterprise integration pattern
that is implemented to communicate from
one application to another is filter integration
pattern, Filter patter is very easy to use and
can be commonly read as English text. For
example, if you need to transfer message
between ActiveMQ and Web sphere, one
can use the camel integration patter.
Moreover, one can also make a DSL
content-based router. Also, the apache
camel is compatible with various
programming language i.e. java, xml, and
many more.

Let us have a look at the routing specified
using XML content.

And the Java Implementation of the above
code is as below.

Problems Solved by Apache Camel

1. It eliminates the need of knowing the
deep knowledge of different applications
and how to transfer and receive
information from one application to
another.

2. Also apache camel helps in solving
integration problems within the
application with the help of routing
libraries.

3. Integration of components is made
possible with the help of routing logic
and mediation rules implementation
using Apache open source framework.

3.4 The Problem statement which
is given an implementation in the

research project.

Problem Scope

According to the Mark Suster, in an article
Social networking Past, Present, Future, he
talks about the future of social networking
where the Face book will be linked with
Twitter and other social networking sites.
Thus, we would like to propose a suggestion
in terms of the users perspective that can
someone build an application in which if we
upload my pictures at Face book, it can
automatically uploaded on Twitter and other
social networking sites. To build an
application, some of the things that should
be known to the software engineer are[8][5]

1. The Integration approaches other
social networking sites are using.

2. The deep knowledge of those
applications on how they
communicate with the external

.

3. To come up with such a solution
that there is a solid implementation
for the Enterprise integration
patterns being used in the
Integration process.

Thus, in this paper we will be talking about
how one can develop software that will help
the user to upload the pictures from one
social networking site to all other social
networking sites automatically without
having the hurdles mentioned above[8].

First, let us look at some of the enterprise
integration patterns that will help in
transferring files from application to another.
The integration patterns that will be used to
solve the problem states are a routing
pattern, a message filter pattern. Either
message filter pattern or content-based

router pattern can be used to transfer
information. Lets us briefly look at the
integration patterns[8][7].

Message Filter Router Integration Pattern

The message filter pattern helps in filtering
the incoming messages so that we can
detect whether the message that was sent is
the right message that needs to be sent.
Basically, the message filter works as that
the software engineer provides some rules
that the incoming message needs to satisfy
in order to pass through the filter. If the
conditions are not met, then the message is
not transferred ahead of the filter[9][6].

The apache Camel provides so much
flexibility that one can write the rules in any
programming language such as Xml, spring,
Scala, Java, and many more [9].

So lets us write an example where we only

 [9].

Code in Java looks like

from ("direct: Point").

//from where the message is coming

filter (header ("foo").isEqualTo ("bar"))

//check where header foo has a value bar

to ("mock: Point");

//if passes send it to the specific location

Whereas the same rule if written in Spring
looks like[9]

<camelContext
errorHandlerRef="errorHandler"
xmlns="http://camel.apache.org/schema/spri
ng">

 <route>

 <from uri="direct: Spoint"/>

 <filter>

 <xpath>$foo = 'bar'</xpath>

 <to uri="mock: fPoint"/>

 </filter>

 </route>

</camelContext>

DSL Content-Based Router Integration
Pattern Using Apache camel

The content based routing integration
pattern helps in routing the incoming
message to its appropriate location by
checking the content of the incoming
message[9].

For example if we need to route the
incoming message depending on the header

Java look like [9]

from("starting:a")

.choice()

.when(header("foo").isEqualTo("bar"))

 .to("final:b")

 .when(header("foo").isEqualTo("cheese"))

 .to("final:c")

.otherwise()

 .to("final:d");

 }

When written in Spring XML it looks like
this[9]

<camelContext
errorHandlerRef="errorHandler"
xmlns="http://camel.apache.org/schema/spri
ng"><route>

 <from uri="starting:a"/>

<choice>

<when>

 <xpath>$foo = 'bar'</xpath>

 <to uri="final:b"/>

 </when>

 <when>

 <xpath>$foo = 'cheese'</xpath>

 <to uri="final:c"/>

 </when>

<otherwise>

<to uri="final:d"/>

 </otherwise>

 </choice></route></camelContext>

After looking at the integration pattern, the
other problem that the Apache Camel helps
is that it resolves the integration with other
application easier. To do so, Apache Camel
uses a DSL (Domain Specific Language)
that also can be written in any language
such as XML, spring, Java, Scala, and many
more. This helps in creating the entire route
for the packet. One can easily write a route
in java in one line [9]i.e.

from("seda:a").to("seda:b");

This statement routes the message from
seda:a to seda:b.

After creating a particular route for the
message and setting up the filtration of
these messages using the integration
pattern, now lets us focus on how to open
an ftp server using Apache Camel[9].

One can easily write an ftp connection when
written look like below [9]

<ftpserver:server id="ftpServer" max-
logins="10 anon-enabled="true" max-anon-
logins="5" max-login-failures="3"login-
failure-delay="20">

<ftpserver:listeners>

<ftpserver:nio-listener name="default"
port="3333" local-address="localhost"/>

 </ftpserver:listeners>

 <ftpserver:file-user-manager
file="classpath:users.properties" encrypt-
passwords="clear" />

 </ftpserver:server>

3.3 Related Case Study

Bond Trading System

Introduction

Abstraction of reusable form of idea is called
Pattern[4]. In this case study we explain
how patterns are used to solve real world
problems. We used discovery process [4] to
solve problems in Bond trading system.
Patterns are used in various stage of
project. It was initially used to choose the
right pattern, how to combine and adjust
patterns [4] to get best end results. The
factors that affect our decision-making are
system integration, client decisions,
business, architectural and technical
requirements[4].

Problem Statement

Wall Street Investment bank [4] decides to
build an efficient bond pricing system. If
traders want to buy bonds they will have to
send prices to different trading venues[4].
Each trading center had their own user
interface. This system will compare bond
price with different markets and get the best
price for user. In order to get best request
system needs to communicate with different
components. For this we need the
integration of various enterprise software
which makes them to process the
communication between the components.
for this we have used an open source
integration framework which implements the
various Enterprise integration patterns and
thus providing the routes and mediation
logic.

High Level Flow [4], System will receive
market data. Then analytics engine will alter
the data. Modified analytical data is sent out
to different trading venues [4] so that all
traders can buy or sell the bonds.

Design process problems: Java Client

compatible with
Windows NT and Solaris workstations. C++
components were used on server side.
TIBCO information Bus messaging
infrastructure will communicate with market
data components [4]. The process of
communication and integration of all these
components is considered to be the real
design process problem.

Components in the integration process
Three major components in the integration
process are

 Market Data Price Feed Server [4]
 Analytics Engine [4]
 Contribution Server [4]

The main problem and the solution we
propose is the integration of the above
components to communicate with each
other.

Proposed Solution

First we decide how to integrate the Java
thick client and two Java server
components. We had four different
integration to choose. They are File transfer,
Shared Database, Remote Procedure
Invocation and Messaging [4]. We decide to
go with Messaging as it is easy to implement
in Java and it simplifies this problem.
Different types of pricing data can have
separate channel with Messaging .The
messaging is implemented using the open
source integration framework in apache
camel. This also takes care of the routing
process along with the mediation logic. Thus
camel is very helpful for us to provide
integration in this scenario and provide the
concrete implementation of the Enterprise
integration patterns.

Fig 1: shows the current system design. This
application pattern contains Gateways and

components used in system. Channel
Adapters and non-messaging protocol was
used to implement Message translator. Two

messaging systems are connected using
Channel Adapters.[4]

Fig 2: Message flow with Channel
Types[4]

Above figure shows the Message flow with
Channel Types. Message channel is used
only in one direction. Point-to-Point is used
for Client-to-Server communication. Publish-
subscribe are used in the case of server-to-
client communications. Direct
communication and multicast increases the
system productions.

Fig 3: Market Data Flow to Client[4]

Major Production Crash: System goes
down due to heavy flow and pattern is used
to fix problem. Message Dispatcher
improved but did not fix the problem
completely.[4]

Case Study Summary

Patterns are applied to solve problems in
various stages. We had problem during
initial design and we used pattern to solve it.
We also noticed patterns are used in all third
party products. Most real problems have
same kind of business, technical and
architectural problems and using patterns
can solve it. So understanding how patterns
works is very important. Once we
understand how patterns works we can
implement in our system to solve problems.
But the implementation concern in our case
is taken over by the Apache camel which
makes the Enterprise Integration process
simple. Thus we were able to integrate the
components without any concern to the
implementation of the Enterprise integration
patterns because it is taken care by the
open source framework call Apache camel
[4]

Conclusion

Thus, one can make an Integration of
Enterprise Integration Applications Possible
with the help of open source integration
framework called Apache camel which
provides the routing methods, mediation
logic and implementation of the Enterprise
Integration Patterns Possible. As discussed
in the paper we provide the solution to the
integration of Immigration systems of
various countries at large using this open
source framework which will be considered
flexible on the part of the developers ar they
need not worry about the routing ,mediation
logic and implementation of enterprise
integration patterns. As a part of the
research report we are providing the coding
for transferring files through an ftp server
using apache camel which is considered to
be the implementation part of the big
problem domain.

References

1. Umapathy, K.; Purao, S.; , "Designing
Enterprise Solutions with Web Services and
Integration Patterns," Services Computing,
2006. SCC '06. IEEE International
Conference on , vol., no., pp.111-118, 18-22
Sept. 2006doi: 10.1109/SCC.2006.42. Web.
05 May
2011.<http://ieeexplore.ieee.org/stamp/stam
p.jsp?tp=&arnumber=4026911&isnumber=4
026874>

2. Xinhuai Tang; Xiangfeng Luo; Xueqiang
Mi; Xiaozhou Yuan; Delai Chen; , "DSL
Route: An Efficient Integration Solution for
Message Routing," Semantics, Knowledge
and Grid, 2009. SKG 2009. Fifth
International Conference on , vol., no.,
pp.436-437, 12-14 Oct. 2009

doi: 10.1109/SKG.2009.66. Web. 05 May
2011.<http://ieeexplore.ieee.org/stamp/stam
p.jsp?tp=&arnumber=5370324&isnumber=5
368022>

3. "Apache Camel: User Stories." Apache
Camel: Index. The Apache Software
Foundation. Web. 05 May 2011.
<http://camel.apache.org/user-stories.html>.

4. Simon, Jonathan. "Enterprise Integration
Patterns - Case Study: Bond Trading
System." Home - Enterprise Integration
Patterns. 2003. Web. 09 May 2011.
<http://www.eaipatterns.com/BondTradingC
aseStudy.html>.

5. Anstey, Jonathan. Apache Camel:
Integration Nirvana. Progress Software
Corporation, 20 Mar. 2009. Web. 5 May
2011.
<http://architects.dzone.com/sites/all/files/D
Zone_Camel_Article_JonathanAnstey.pdf>.

6. "Introduction to Apache Camel." Interview
by Ibsen Claus. Fusesource.com. Progress
Fuse, Sept. 2010. Web. 5 May 2011.
<http://download.progress.com/5331/open/a
dobe/prc/products/fuse/intro_to_apache_ca
mel/index.htm>.

7. Reijn, Jeroen. "Apache Camel: Open
Source Integration Framework." Web log
post. Jeroen Reijn. 30 Mar. 2009. Web. 05
May 2011.
<http://blog.jeroenreijn.com/2009/03/apache
-camel-open-source-integration.html>.

8. Suster, Mark. "Social Networking." Past,
Present, Future (2010). GRP Partners, 9
Oct. 2010. Web. 05 May 2011. <8.
https://docs.google.com/viewer?a=v&pid=g
mail&attid=0.1&thid=12fabef24bd35692&mt
=application/vnd.ms-
powerpoint&url=https://mail.google.com/mail
/?ui%3D2%26ik%3D7e0577c544%26view%
3Datt%26th%3D12fabef24bd35692%26attid
%3D0.1%26disp%3Dattd%26realattid%3Df_
gn62gvc00%26zw&sig=AHIEtbT5LUl_SD2f-
Y9Oi3yPoDo4YIYdcA>.

 9. Apache Camel: Index. Web. 09 May
2011. <http://camel.apache.org/>

