
By

Team High Calibre

Kulkarni, Anuvinda

Murthy, Megha

Dattatreya, Shweta

Agenda

 Problem Statement

 Solution to the problem statement using hazelcast

 Distributed Caching

 Technologies Used

 Hazelcast

 Hibernate

 Hotwire API

 Basic workflow of the proposed system

 Execution and performance Evaluation

 Conclusion

 References

Problem Statement

 Airline Use Case - A passenger searches for flights by specifying the
source, destination, and flight date and receives the list of flights and hotel
deals for his destination.

 Problem - The search keeps hitting the Flight database very frequently.
Database is overloaded and too slow. 80% of the searches are read-only.
These read-only transactions keep hitting the database frequently thus
making the response time slow.

 Our Solution

 To reduce the load on database, deploy a distributed cache with several
nodes running in the cluster

 Cache data from database

 Cached data is distributed equally between all the nodes

 To avoid cache from ballooning, keep expiry on items.

 Old untouched flight searches with hotel deals will expire from cache, but
master data is always present in database and the hotel deals API

Distributed Caching

[Source: http://sourcedaddy.com/windows-7/how-distributed-cache-works.html]

http://sourcedaddy.com/windows-7/how-distributed-cache-works.html
http://sourcedaddy.com/windows-7/how-distributed-cache-works.html
http://sourcedaddy.com/windows-7/how-distributed-cache-works.html
http://sourcedaddy.com/windows-7/how-distributed-cache-works.html
http://sourcedaddy.com/windows-7/how-distributed-cache-works.html
http://sourcedaddy.com/windows-7/how-distributed-cache-works.html
http://sourcedaddy.com/windows-7/how-distributed-cache-works.html
http://sourcedaddy.com/windows-7/how-distributed-cache-works.html
http://sourcedaddy.com/windows-7/how-distributed-cache-works.html
http://sourcedaddy.com/windows-7/how-distributed-cache-works.html

Advantages of Distributed Caching

 High performance

 High scalability

 Reduced latency

 No single point of failure

 Session data is preserved

 Maintenance is easy

 Low cost

Technologies Used

 Hazelcast

 Hibernate

 Hotwire API

 MySql DB

 Java XPath API

Hazelcast- A brief history

 Start-up founded in 2008

 By founders - Talip Ozturk, Fuad Malikov

 Open Source product under Apache License

What is Hazelcast?

 Clustering and scalable data distribution platform for java

 In-memory data grid

Hazelcast architecture

[Source: http://www.hazelcast.com/documentation.jsp]

http://www.hazelcast.com/documentation.jsp
http://www.hazelcast.com/documentation.jsp
http://www.hazelcast.com/documentation.jsp

Hazelcast features

 Distributed java.util.{Queue, Set, List, Map}

 Distributed java.util.concurrency.locks.Lock

 Distributed java.util.concurrent.ExecutorService

 Distributed MultiMap for one to many mapping

 Distributed Topic for publish/subscribe messaging

 Distributed Indexing and Query support

 Transaction support and J2EE container integration via JCA

 Socket level encryption for secure clustersWrite-Through and Write-Behind
persistence for maps

 Java Client for accessing the cluster remotely

 Dynamic HTTP session clustering

 Support for cluster info and membership events

 Dynamic discovery, scaling, partitioning with backups, fail-over

 Web-based cluster monitoring

 How does hazelcast help?

 Auto discovery of members in the cluster

 Fault tolerant

 Redistributing of data among all nodes even upon the entry of new
node.

Hibernate

•An object-relational mapping (ORM) library for the Java language

•Hibernate is free software that is distributed under the GNU Lesser
General Public License

•Primary feature is to map Java classes to database tables (and from Java
data types to SQL data types)

•Mapping Java classes to database tables is accomplished through the
configuration of an XML

Hibernate Architecture

[Source: http://hibernate.org/docs-hib-architecture

http://hibernate.org/docs-hib-architecture
http://hibernate.org/docs-hib-architecture
http://hibernate.org/docs-hib-architecture
http://hibernate.org/docs-hib-architecture
http://hibernate.org/docs-hib-architecture
http://hibernate.org/docs-hib-architecture

Hibernate Configuration File

 hibernate.cfg.xml

 JDBC Driver class to use

 Connection to the db

 Connection Pool details

 Second level of caching

 fight_details.hbm.xml

 Mapping between the DB tables and Java classes

How does hibernate help?

 Greatly reduces complexity

 Easy configuration

 Connection pool

Hotwire API

 Hotel deals on hotwire

 Search result based on destination location

 Allows search based on multiple parameters

 location

 price

 hotel star rating

 travel dates

 length of stay

 restrict to weekend stay

 time since deal was discovered

Basic Workflow of our model

Execution & Performance Evaluation

1. Run the CacheEngine to create cluster members

2. Origin = “YUM”, destination = “LAX”, flightDate = “2011-06-29”. Set the pre-fetch to true

3. Origin = “YUM”, destination = “LAX”, flightDate = “2011-06-29”. Set the pre-fetch to false

4. Origin = “YUM”, destination = “LAX”, flightDate = “2011-06-30”. Set the pre-fetch to false

5. Origin = “YUM”, destination = “LAX”, flightDate = “2011-06-28”. Set the pre-fetch to false

6. Origin = “SJC”, destination = “JFK”, flightDate = “2011-06-29”. Set the pre-fetch to false

7. Origin = “SJC”, destination = “JFK”, flightDate = “2011-06-30”. Set the pre-fetch to false

8. Origin = “SJC”, destination = “JFK”, flightDate = “2011-06-30”. Set the pre-fetch to false

9. Origin = “SJC”, destination = “JFK”, flightDate = “2011-06-30”. Set the pre-fetch to false

10. Origin = “SJC”, destination = “JFK”, flightDate = “2011-06-30”. Set the pre-fetch to false

11. Origin = “SJC”, destination = “JFK”, flightDate = “2011-06-30”. Set the pre-fetch to false

1. Run the CacheEngine to create cluster members

2. Origin = “YUM”, destination = “LAX”, flightDate = “2011-06-29”. Set the pre-fetch to true

MySQL query - completed in [2768] milliseconds

Hotwire API query - completed in [2338] milliseconds

3. Origin = “YUM”, destination = “LAX”, flightDate = “2011-06-29”. Set the pre-fetch to false

Flight query from cache - completed in [2] milliseconds

Hotel deals from cache - completed in [3] milliseconds

4. Origin = “YUM”, destination = “LAX”, flightDate = “2011-06-30”. Set the pre-fetch to false

Flight query from cache - completed in [2] milliseconds

Hotel deals from cache - completed in [2] milliseconds

5. Origin = “YUM”, destination = “LAX”, flightDate = “2011-06-28”. Set the pre-fetch to false

Flight query from cache - completed in [2] milliseconds

Hotel deals from cache - completed in [2] milliseconds

6. Origin = “SJC”, destination = “JFK”, flightDate = “2011-06-29”. Set the pre-fetch to false

MySQL query - completed in [125] milliseconds

Hotwire API query - completed in [1119] milliseconds

Execution & Performance Evaluation…continued

 7. Origin = “SJC”, destination = “JFK”, flightDate = “2011-06-30”. Set the pre-fetch to false

MySQL query - completed in [176] milliseconds

Hotel deals from cache - completed in [3] milliseconds

8. Origin = “SJC”, destination = “JFK”, flightDate = “2011-06-30”. Set the pre-fetch to false

Flight query from cache - completed in [2] milliseconds

Hotel deals from cache - completed in [2] milliseconds

9. Origin = “SJC”, destination = “JFK”, flightDate = “2011-06-30”. Set the pre-fetch to false

Flight query from cache - completed in [3] milliseconds

Hotel deals from cache - completed in [3] milliseconds

10. Origin = “SJC”, destination = “JFK”, flightDate = “2011-06-30”. Set the pre-fetch to false

MySQL query - completed in [159] milliseconds

Hotwire API query - completed in [529] milliseconds

11. Origin = “SJC”, destination = “JFK”, flightDate = “2011-06-30”. Set the pre-fetch to false

Flight query from cache - completed in [2] milliseconds

Hotel deals from cache - completed in [2] milliseconds

Execution & Performance Evaluation…continued

Conclusion

 Hazelcast as an in-memory data grid - distributes data across cheap,
commodity hardware with an open-source infrastructure

 Facilitates failover and scalability

 Disadvantage - technically not feasible to query using order by, group
by or database joins in a distributed caching infrastructure

 Well-suited for applications that query using simple SQL-predicates

 Open source - easy to code

References

 http://code.google.com/edu/parallel/dsd-tutorial.html

 http://net.pku.edu.cn/~course/cs501/2011/resource/2006-Book-
distributed%20systems%20principles%20and%20paradigms%202nd%20ed
ition.pdf

 http://developer.hotwire.com/apps/mykeys

 http://developer.hotwire.com/docs/read/Hotel_Deals_API

 http://api.hotwire.com/v1/deal/hotel?apikey=q9w8hq5ecs4ag7gfcyn7g78a
&limit=5&dest=NYC&distance=*~30&starrating=4~*&sort=price

 http://hc.apache.org/httpcomponents-client-ga/examples.html

 http://www.ibm.com/developerworks/library/x-javaxpathapi/index.html

 www.data.gov

http://code.google.com/edu/parallel/dsd-tutorial.html
http://code.google.com/edu/parallel/dsd-tutorial.html
http://code.google.com/edu/parallel/dsd-tutorial.html
http://code.google.com/edu/parallel/dsd-tutorial.html
http://net.pku.edu.cn/~course/cs501/2011/resource/2006-Book-distributed systems principles and paradigms 2nd edition.pdf
http://net.pku.edu.cn/~course/cs501/2011/resource/2006-Book-distributed systems principles and paradigms 2nd edition.pdf
http://net.pku.edu.cn/~course/cs501/2011/resource/2006-Book-distributed systems principles and paradigms 2nd edition.pdf
http://net.pku.edu.cn/~course/cs501/2011/resource/2006-Book-distributed systems principles and paradigms 2nd edition.pdf
http://net.pku.edu.cn/~course/cs501/2011/resource/2006-Book-distributed systems principles and paradigms 2nd edition.pdf
http://net.pku.edu.cn/~course/cs501/2011/resource/2006-Book-distributed systems principles and paradigms 2nd edition.pdf
http://developer.hotwire.com/apps/mykeys
http://developer.hotwire.com/apps/mykeys
http://developer.hotwire.com/docs/read/Hotel_Deals_API
http://developer.hotwire.com/docs/read/Hotel_Deals_API
http://developer.hotwire.com/docs/read/Hotel_Deals_API
http://api.hotwire.com/v1/deal/hotel?apikey=q9w8hq5ecs4ag7gfcyn7g78a&limit=5&dest=NYC&distance=*~30&starrating=4~*&sort=price
http://api.hotwire.com/v1/deal/hotel?apikey=q9w8hq5ecs4ag7gfcyn7g78a&limit=5&dest=NYC&distance=*~30&starrating=4~*&sort=price
http://api.hotwire.com/v1/deal/hotel?apikey=q9w8hq5ecs4ag7gfcyn7g78a&limit=5&dest=NYC&distance=*~30&starrating=4~*&sort=price
http://api.hotwire.com/v1/deal/hotel?apikey=q9w8hq5ecs4ag7gfcyn7g78a&limit=5&dest=NYC&distance=*~30&starrating=4~*&sort=price
http://hc.apache.org/httpcomponents-client-ga/examples.html
http://hc.apache.org/httpcomponents-client-ga/examples.html
http://hc.apache.org/httpcomponents-client-ga/examples.html
http://hc.apache.org/httpcomponents-client-ga/examples.html
http://hc.apache.org/httpcomponents-client-ga/examples.html
http://hc.apache.org/httpcomponents-client-ga/examples.html
http://hc.apache.org/httpcomponents-client-ga/examples.html
http://www.ibm.com/developerworks/library/x-javaxpathapi/index.html
http://www.ibm.com/developerworks/library/x-javaxpathapi/index.html
http://www.ibm.com/developerworks/library/x-javaxpathapi/index.html
http://www.ibm.com/developerworks/library/x-javaxpathapi/index.html
http://www.ibm.com/developerworks/library/x-javaxpathapi/index.html

