Experimental Determination of $\mathbf{K}_{\mathbf{i}}$ Using the Dixon Plot

In the derivation below, V is used to represent $\mathrm{V}_{\text {max }}$ and K is used to represent K_{m}.
The expression that describes the relationship of v to [S], [I] and various constants is given below:
$\mathrm{v}=\mathrm{V}[\mathrm{S}] /(\mathrm{K}(1+[\mathrm{I}] / \mathrm{Ki})+[\mathrm{S}](1+[\mathrm{I}] / \mathrm{Ki}))$; the reciprocal of this relationship can be written as
$1 / \mathrm{v}=(\mathrm{K}+[\mathrm{S}]) / \mathrm{V}[\mathrm{S}]+[\mathrm{I}](\mathrm{K} / \mathrm{Ki}+[\mathrm{S}] / \mathrm{Ki}) / \mathrm{V}[\mathrm{S}]$, which means that at any fixed value of $[\mathrm{S}]$, $1 / v$ is linearly related to the value of $[I]$. (A plot of $1 / v$ vs. [I] is called a Dixon plot.)

If such a relationship is empirically studied at two different values of the fixed substrate concentration ($[\mathrm{S}]_{1}$ and $[\mathrm{S}]_{2}$), the two straight lines intersect when $1 / \mathrm{v}_{1}=1 / \mathrm{v}_{2}$. Using the above relationship for $1 / \mathrm{v}$, it can be shown that under these conditions

$$
\begin{aligned}
& \mathrm{K}+[\mathrm{S}]_{1} /\left(\mathrm{V}+[\mathrm{S}]_{1}\right)+[\mathrm{I}]\left(\mathrm{K} / \mathrm{Ki}+[\mathrm{S}]_{1} / \mathrm{Ki}\right) /\left(\mathrm{V}+[\mathrm{S}]_{1}\right)= \\
& \mathrm{K}+[\mathrm{S}]_{2} /\left(\mathrm{V}+[\mathrm{S}]_{2}\right)+[\mathrm{I}]\left(\mathrm{K} / \mathrm{Ki}+[\mathrm{S}]_{2} / \mathrm{Ki}{ }^{\prime}\right) /\left(\mathrm{V}+[\mathrm{S}]_{2}\right)
\end{aligned}
$$

Canceling the constant terms that appear on both sides of the equation leaves
$\mathrm{K} / \mathrm{V}[\mathrm{S}]_{1}+[\mathrm{I}](\mathrm{K} / \mathrm{Ki}) / \mathrm{V}[\mathrm{S}]_{1}=\mathrm{K} / \mathrm{V}[\mathrm{S}]_{2}+[\mathrm{I}](\mathrm{K} / \mathrm{Ki}) / \mathrm{V}[\mathrm{S}]_{2}$, or
$\mathrm{K} / \mathrm{V}[\mathrm{S}]_{1}+[\mathrm{I}](\mathrm{K} / \mathrm{Ki}) / \mathrm{V}[\mathrm{S}]_{1}-\mathrm{K} / \mathrm{V}\left[\mathrm{S}_{2}-\left[\mathrm{II}(\mathrm{K} / \mathrm{Ki}) / \mathrm{V}\left[\mathrm{S}_{2}=0\right.\right.\right.$, which can be factored according to $\mathrm{K} / \mathrm{V}\left(1 /[\mathrm{S}]_{1}+1 /[\mathrm{S}]_{2}\right)+(\mathrm{K}[\mathrm{I}] / \mathrm{VKi})\left(1 /[\mathrm{S}]_{1}+1 /[\mathrm{S}]_{2}\right)=0$ or $\mathrm{K} / \mathrm{V}\left(1 /[\mathrm{S}]_{1}+1 /[\mathrm{S}]_{2}\right)(1+[\mathrm{I}] / \mathrm{Ki})=0$. Since by definition neither of the first two terms in the above relationship can have a value of zero, it must be true that at the point of intersection of the lines in a Dixon plot representing two different fixed values of $[\mathrm{S}],(1+[\mathrm{I}] / \mathrm{Ki})=0$. This means that at the point of intersection, $[I]=-\mathrm{Ki}$; thus a vertical line from the point of intersection to the [I] axis provides an empirically determined value for Ki.

