
Chapter 6.  Manipulator Dynamics 

11-3-14 

 

Quiz on Nov. 11 on Homework #8 

 

Homework #8.  Not collected. 

Solve 6.1 (Answer partially given in the textbook). 6.12 (Answer given). 6.16. 

Show how (6.32) is derived from (6.15) and (5.45). 

Trace the steps taken to derive (6.36) from (6.12). 

Verify the formulation of (6.42).  

See the Example in Section 6.7 – Two link robot arm with simplifying assumptions.  

Check the vector cross multiplications at several places in the solution. 

 

Acceleration of Rigid Body – Definition: 

Acceleration of linear velocity vector VQ in frame {B} 
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Acceleration of angular velocity vector  Q in frame {B} 
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Linear Acceleration: 

From (5.12),       
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Differentiating (6.5) and a term for linear acceleration of the origin of {B}, 

)()( QR
dt

d
QRVR

dt

d
V BA

BB

ABA

BB

A

Q

BA

BQ

A       (6.7) 

)()( QRVRQRVRVR BA

BB

A

Q

BA

BB

ABA

BB

A

Q

BA

BB

A

Q

BA

B    (6.8) 

With the linear acceleration of {B}Orig 
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When BQ is constant, 
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Angular Acceleration: 

To find the angular acceleration of {C} w.r.t. {A}, differentiate 
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Rigid Body Mass Distribution 

Inertia tensor – Describes the distribution of the mass around the center of a rigid body. 

 

 

 

 

 

 

 

 

 

AP is the location vector of the differential volume dv. 

 

Inertia Tensor of {A}:  
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Mass moment of inertia:  
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Example 6.1 
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Parallel Axis Theorem: 

Inertial tensor of a mass in frame {A} w.r.t. frame {C} with its origin at the center of the mass. 
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A zyxP  - Location of the center of mass in {A}. 

Example 6.2  

The frame {A} has its origin at  Tc
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Newton’s Equation on Force:  CmF    at the center of mass 

Euler’s Equation on Moment:  IIN CC    at the center of mass 

IC
= inertia tensor in frame {C} with its origin at the mass center 

 

Newton-Euler Dynamic Equations 

 

Derivation of angular acceleration 

Forward angular velocity propagation 
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Equating {B} to {A}, 
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Rotating {A} w.r.t. {C} 
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Rewriting {C} with {i+1} and from (5.45) 
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For prismatic joints 
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Follow the derivation of (6.32) from (6.15) and (5.45) 



 

Derivation of linear acceleration 

From (6.12) and following similar steps taken for angular acceleration,  
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For prismatic joints, add two more terms to (6.34) per (6.10) 
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Linear acceleration of the center of mass, from (6.12) 

 

Trace the steps taken in applying (6.12), 
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The inertial force and torque acting at the center of the mass: 

From (6.32) and (6.36) 
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H7Backward Iteration for Joint Forces and Torque 

 

Force and torque balance equations at the center of mass of link i: 
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Rearranging the equations and adding rotations; 
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Figure out how this equation is related to (6.39). 
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Finally, the joint torque is the Z component of the vector representing the inertial torque: 
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For prismatic joints: 
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Forward and backward iterations: Eq (6.45)-(6.53) 

Forward - Link velocities and accelerations via the Newton-Euler (6.31)-(6.37).   

Backward - Find joint forces and torques via (6.38)-(6.44). 

  

See the Example in Section 6.7 – Simplified two link robot arm. 

Check the vector cross multiplications at several places in the solution. 

 

Dynamic Equations 

State Space equation: 
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where, 

)(M = n x n mass matrix of terms containing nii ..1,   



  ,V = n x 1 vector of centrifugal and Coriolis terms containing nii ..1,   

 G = n x 1 vector containing a “g” gravity term. 

Configuration Space equation: 
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where, 

)(xB = matrix of Coriolis coefficients 
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Lagrangian Dynamic Formulationu  

Quadratic form of manipulator kinetic energy, analogous to k = ½ mv2 
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Potential energy:  
irefCi

o

ii uPgTmu  0
     (6.73) 

   iuu  

Lagrangian  The difference between the kinetic energy and the potential energy 
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For Cartesian space,  
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Substituting (6.97) into (6.94) 
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Cartesian configuration space torque 
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where, 

)(xB = matrix of Coriolis coefficients 

)(xC = matrix of centrifugal coefficients 

   nn  
13121 ...  , a vector of the joint velocity products   
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Friction 

Friction force   ,F  may be added to (6.59) or (6.104) to account for the effect of friction on  

Simulation  

Numerical integration method is used to solve the acceleration problem of the manipulator. 
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