Chapter 5 Jacobians: Velocities and Static Forces

HW \#6. Due 10/15/14. 5.1, 5.7, 5.8, 5.10, 5.16. Help available on Monday 10/16.
Velocity of time varying position vector Q in frame $\{\mathrm{B}\}$, by definition

$$
\begin{equation*}
{ }^{B} V_{Q}=\frac{d}{d t}{ }^{B} Q=\lim _{\Delta t \rightarrow 0} \frac{Q(t+\Delta t)-Q(t)}{\Delta t} \tag{5.1}
\end{equation*}
$$

The same reflected on frame $\{\mathrm{A}\}$

$$
\begin{equation*}
{ }^{A}\left({ }^{B} V_{Q}\right)={ }_{B}^{A} R^{B} V_{Q} \tag{5.4}
\end{equation*}
$$

Velocity of the origin of a translating frame $\{B\}$ in terms of $\{A\}$

$$
\begin{equation*}
{ }^{A} v_{B O r g}={ }^{A} V_{B O r g}(v \text { to denote the magnitude of } V) \tag{5.5}
\end{equation*}
$$

Angular velocity of a rotating frame $\{B\}$ in terms of $\{A\}$

$$
\begin{equation*}
{ }^{A} \omega_{B}={ }^{A} \Omega_{B} \quad(\omega \text { to denote the magnitude of } \Omega) \tag{5.6}
\end{equation*}
$$

Linear velocity of Q in frame $\{B\}$ which is moving relative to $\{A\}$

$$
\begin{equation*}
{ }^{A} V_{Q}={ }^{A} V_{B O r g}+{ }_{B}^{A} R^{B} V_{Q} \tag{5.7}
\end{equation*}
$$

Rotational velocity of frame $\{B\}$ with respect to $\{A\},{ }^{A} \Omega_{B}$, applied to ${ }^{A} Q_{B}$,

$$
\begin{equation*}
{ }^{A} V_{Q}={ }^{A} \Omega_{B} \times{ }^{A} Q \text {, a vector cross product } \tag{5.10}
\end{equation*}
$$

With Q_{B} moving at velocity ${ }^{B} V_{Q}$ in $\{B\}$ and frame $\{B\}$ moving at ${ }^{A} V_{B O r g}$ with respect to $\{A\}$, the linear and rotational velocity of Q in moving and turning frame $\{B\}$ with respect to $\{A\}$,

$$
\begin{equation*}
{ }^{A} V_{Q}={ }^{A} V_{B O r g}+{ }_{B}^{A} R^{B} V_{Q}+{ }^{A} \Omega_{B} \times{ }_{B}^{A} R^{B} Q \tag{5.13}
\end{equation*}
$$

Property of orthonormal rotation matrix for velocity analysis
Taking a derivative of $R R^{T}=I_{n}$

$$
\begin{equation*}
\dot{R} R^{T}+R \dot{R}^{T}=\dot{R} R^{T}+\left(\dot{R} R^{T}\right)^{T}=0_{n} \tag{5.16}
\end{equation*}
$$

So, $\dot{R} R^{T}=\dot{R} R^{-1}$ is a skew-symmetric matrix (in the form of $S+S^{-1}=0$).

Velocity of vector P due to rotating frame

$$
\begin{align*}
& { }^{A} V_{P}={ }_{B}^{A} \dot{R}^{B} P \tag{5.22}\\
& { }^{A} V_{P}={ }_{B}^{A} \dot{R}_{B}^{A} R^{-1 A} P \\
& { }^{A} V_{P}={ }_{B}^{A} S^{A} P, \tag{5.24}
\end{align*}
$$

S is a skew-symmetric matrix $\left(S+S^{-1}=0\right)$

Skew-symmetric matrices and vector cross product

$$
\begin{gather*}
\text { If, } S=\left[\begin{array}{ccc}
0 & -\Omega_{z} & \Omega_{y} \\
\Omega_{z} & 0 & -\Omega_{x} \\
-\Omega_{y} & \Omega_{x} & 0
\end{array}\right], \Omega=\left[\begin{array}{l}
\Omega_{x} \\
\Omega_{y} \\
\Omega_{z}
\end{array}\right] \text {, and } \mathrm{P}=\left[\begin{array}{l}
P_{x} \\
P_{y} \\
P_{z}
\end{array}\right] \text { and then } \\
S P=\Omega \times P=\left[\begin{array}{c}
-\Omega_{z} P_{y}+\Omega_{y} P_{z} \\
\Omega_{z} P_{x}-\Omega_{x} P_{z} \\
-\Omega_{y} P_{x}+\Omega_{x} P_{y}
\end{array}\right] \tag{5.27}
\end{gather*}
$$

Then, from (5.24)

$$
\begin{equation*}
{ }^{A} V_{P}={ }^{A} \Omega_{B} \times{ }^{A} P \tag{5.28}
\end{equation*}
$$

Physical Interpretation of Angular Velocity Vector Ω

$$
\begin{align*}
& \dot{R}=\lim _{\Delta t \rightarrow 0} \frac{R(t+\Delta t)-R(t)}{\Delta t} \tag{5.29}\\
& R(t+\Delta t)=R_{K}(\Delta \theta) R(t) \tag{5.30}
\end{align*}
$$

\rightarrow During $\Delta t, R$ rotates by $\Delta \theta$ about vector K, an equivalent axis of rotation.

From (2.80) and $\sin (x) \approx x, \cos (x) \approx 1$ for a small value of x according to the Taylor expansion,

$$
R_{K}(\Delta \theta) \approx\left[\begin{array}{ccc}
1 & -k_{z} \Delta \theta & k_{y} \Delta \theta \tag{5.33}\\
k_{z} \Delta \theta & 1 & -k_{x} \Delta \theta \\
-k_{y} \Delta \theta & k_{x} \Delta \theta & 1
\end{array}\right]
$$

Substituting (5.33) into (5.30), and (5.30) into (5.29), and taking the limit

$$
\dot{R}=\left[\begin{array}{ccc}
0 & -k_{z} \dot{\theta} & k_{y} \dot{\theta} \tag{5.35}\\
k_{z} \dot{\theta} & 0 & -k_{x} \dot{\theta} \\
-k_{y} \dot{\theta} & k_{x} \dot{\theta} & 0
\end{array}\right] R(t)
$$

Transposing $R(t)$ to the LHS, and recognizing the RHS as a skew symmetric matrix,

$$
\dot{R} R^{-1}=\dot{R} R^{T}=\left[\begin{array}{ccc}
0 & -k_{z} \dot{\theta} & k_{y} \dot{\theta} \tag{5.36}\\
k_{z} \dot{\theta} & 0 & -k_{x} \dot{\theta} \\
-k_{y} \dot{\theta} & k_{x} \dot{\theta} & 0
\end{array}\right]=\left[\begin{array}{ccc}
0 & -\Omega_{z} & \Omega_{y} \\
\Omega_{z} & 0 & -\Omega_{x} \\
-\Omega_{y} & \Omega_{x} & 0
\end{array}\right]
$$

where $\Omega=\left[\begin{array}{lll}\Omega_{x} & \Omega_{y} & \Omega_{z}\end{array}\right]^{T}=\left[\begin{array}{lll}k_{x} \dot{\theta} & k_{y} \dot{\theta} & k_{z} \dot{\theta}\end{array}\right]^{T}=\dot{\theta} \cdot \hat{K}$

$$
\begin{align*}
& \Omega=\text { angular velocity vector, } \tag{5.37}\\
& K=\text { instantaneous axis of rotation }
\end{align*}
$$

Another Interpretation of angular velocity based on simultaneous Euler rotation Z-Y-Z,

$$
\dot{\Theta}_{Z^{\prime} Y^{\prime} Z^{\prime}}=\left[\begin{array}{lll}
\dot{\alpha} & \dot{\beta} & \dot{\gamma}
\end{array}\right]^{T}
$$

From (2.73) and (5.36), find $\dot{R} R$, a 3×3 matrix.

$$
\dot{R} R^{-1}=\dot{R} R^{T}=\left[\begin{array}{lll}
\dot{r}_{11} & \dot{r}_{12} & \dot{r}_{13} \\
\dot{r}_{21} & \dot{r}_{22} & \dot{r}_{23} \\
\dot{r}_{31} & \dot{r}_{32} & \dot{r}_{33}
\end{array}\right]\left[\begin{array}{lll}
r_{11} & r_{21} & r_{31} \\
r_{12} & r_{22} & r_{32} \\
r_{13} & r_{23} & r_{33}
\end{array}\right] \text {, where } R=R_{Z^{\prime} Z^{\prime}}(\alpha, \beta, \gamma) \text { from (2.72) }
$$

Equating the elements $(3,2),(1,3)$ and $(2,1)$ to find the components in (5.37),

$$
\begin{align*}
& \Omega_{x}=\dot{r}_{31} r_{21}+\dot{r}_{32} r_{22}+\dot{r}_{33} r_{23} \\
& \Omega_{y}=\dot{r}_{11} r_{31}+\dot{r}_{12} r_{32}+\dot{r}_{13} r_{33} \tag{5.40}\\
& \Omega_{z}=\dot{r}_{21} r_{11}+\dot{r}_{22} r_{12}+\dot{r}_{23} r_{13}
\end{align*}
$$

In a general form,

$$
\begin{equation*}
\Omega=\left[E_{Z^{\prime} Y^{\prime} Z^{\prime}}\left(\Theta_{Z^{\prime} Y^{\prime} Z^{\prime}}\right)\right] \dot{\Theta}_{Z^{\prime} Y^{\prime} Z^{\prime}} \tag{5.41}
\end{equation*}
$$

$E_{Z^{\prime} Y^{\prime} Z^{\prime}}()=$. a Jacobian operator relating angle-set velocity vector $\dot{\Theta}_{Z Y^{\prime} Z^{\prime}}=\left[\dot{\theta}_{x}, \dot{\theta}_{y}, \dot{\theta}_{z}\right]_{T}=$ to angular velocity $\Omega=\left[\Omega_{x}, \Omega_{y}, \Omega_{z}\right]$.

Velocity Propagation for revolute joints - More equations!

The angular velocity of link $i+1$ rotating about its Z axis, projected onto link i which also rotates,

$$
{ }^{i} \omega_{i+1}={ }^{i} \omega_{i}+{ }_{i+1}^{i} R \dot{\theta}_{i+1}{ }^{i+1} \hat{Z}_{i+1}={ }^{i} \omega_{i}+{ }_{i+1}{ }^{i} R \cdot{ }^{i+1}\left[\begin{array}{lll}
0 & 0 & \dot{\theta}_{i+1} \tag{5.44}
\end{array}\right]^{T}
$$

Multiplying both sides by ${ }^{i+1} R$

$$
\begin{equation*}
{ }_{i}^{i+1} R^{i} \omega_{i+1}={ }^{i+1} \omega_{i+1}={ }_{i}^{i+1} R^{i} \omega_{i}+\dot{\theta}_{i+1}{ }^{i+1} \hat{Z}_{i+1} \tag{5.45}
\end{equation*}
$$

Linear velocity of frame $\{i+1\}$,

$$
\begin{equation*}
{ }^{i} v_{i+1}={ }^{i} v_{i}+{ }^{i} \omega_{i} \times{ }^{i} P_{i+1} \tag{5.46}
\end{equation*}
$$

Multiplying both sides by ${ }_{i}^{i+1} R$

$$
\begin{equation*}
{ }^{i+1} v_{i+1}={ }_{i}^{i+1} R\left({ }^{i} v_{i+1}+{ }^{i} \omega_{i} \times{ }^{i} P_{i+1}\right) \tag{5.47}
\end{equation*}
$$

For prismatic joint

$$
\begin{align*}
& { }^{i+1} \omega_{i+1}={ }_{i}^{i+1} R^{i} \omega_{i} \\
& { }^{i+1} v_{i+1}={ }_{i}^{i+1} R\left({ }^{i} v_{i}+{ }^{i} \omega_{i} \times{ }^{i} P_{i+1}\right)+\dot{d}_{i+1}{ }^{i+1} \hat{Z}_{i+1} \tag{5.48}
\end{align*}
$$

Example 5.3: - RRR robot with frozen joint 3.
${ }^{i} v_{i},{ }^{i} \omega_{i},{ }^{i} P_{i+1}$ are 3 x 1 vectors. The vector cross products in (5.47) ${ }^{i} \omega_{i} \times{ }^{i} P_{i+1}$ are shown below.

$$
\begin{align*}
& { }^{1} \omega_{1} \times{ }^{1} P_{2}=\left[\begin{array}{ccc}
i & j & k \\
0 & 0 & \dot{\theta}_{1} \\
l_{1} & 0 & 0
\end{array}\right]=\left[\begin{array}{c}
0 \\
l_{1} \dot{\theta}_{1} \\
0
\end{array}\right] \quad{ }^{2} \omega_{2} \times{ }^{2} P_{3}=\left[\begin{array}{ccc}
i & j & k \\
0 & 0 & \dot{\theta}_{1}+\dot{\theta}_{2} \\
l_{2} & 0 & 0
\end{array}\right]=\left[\begin{array}{c}
0 \\
l_{2}\left(\dot{\theta}_{1}+\dot{\theta}_{1}\right) \\
0
\end{array}\right] \\
& { }^{3} v_{3}={ }_{2}^{3} R\left({ }^{2} v_{2}+{ }^{2} \omega_{2} \times{ }^{2} P_{3}\right)=\left[\begin{array}{c}
l_{1} s_{2} \dot{\theta}_{1} \\
l_{1} c_{2} \dot{\theta}_{1}+l_{2}\left(\dot{\theta}_{1}+\dot{\theta}_{1}\right) \\
0
\end{array}\right] \tag{5.55}\\
& { }_{3}^{0} R=\left[\begin{array}{ccc}
c_{12} & -s_{12} & 0 \\
s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{array}\right] \tag{5.56}\\
& { }^{0} v_{3}={ }_{2}^{3} R\left({ }^{2} v_{2}+{ }^{2} \omega_{2} \times{ }^{2} P_{3}\right)=\left[\begin{array}{c}
-l_{1} s_{1} \dot{\theta}_{1}-l_{2} s_{12}\left(\dot{\theta}_{1}+\dot{\theta}_{1}\right) \\
l_{1} c_{1} \dot{\theta}_{1}+l_{2} c_{12}\left(\dot{\theta}_{1}+\dot{\theta}_{1}\right) \\
0
\end{array}\right] \tag{5.57}
\end{align*}
$$

Note that the components of ${ }^{0} v_{3}$ may also be determined geometrically.

Jacobians

Given a system of six non-linear equations for six X's and six Y's.

$$
\begin{aligned}
& Y=F(X) \\
& \delta Y=\frac{\delta F}{\delta X} \delta X \\
& \delta Y=J(X) \delta X \quad \dot{Y}=J(X) \dot{X}
\end{aligned}
$$

A Jacobian in robotics is a matrix of partial derivatives that maps a joint velocity vector

$$
{ }^{0} \dot{\Theta}=\left[\begin{array}{llll}
\dot{\theta}_{1} & \dot{\theta}_{2} & \cdots & \dot{\theta}_{n}
\end{array}\right]^{\mathrm{T}}
$$

into a velocity vector of the end-effector:
${ }^{0} v=\left[\begin{array}{llllll}v_{x} & v_{y} & v_{z} & \omega_{x} & \omega_{y} & \omega_{z}\end{array}\right]^{\mathrm{T}}$
${ }^{0} v={ }^{0} J(\Theta) \dot{\Theta}$
${ }^{0} \dot{\Theta}==^{0} J(\Theta){ }^{-10} v$
${ }^{0} J(\Theta)=\left[\begin{array}{cccc}\frac{\partial f_{1}}{\partial \theta_{1}} & \frac{\partial f_{1}}{\partial \theta_{2}} & \cdots \cdots & \frac{\partial f_{1}}{\partial \theta_{6}} \\ \frac{\partial f_{2}}{\partial \theta_{1}} & \frac{\partial f_{2}}{\partial \theta_{2}} & \cdots \cdots & \frac{\partial f_{2}}{\partial \theta_{6}} \\ \cdots \cdots . . & \cdots \cdots . . & \cdots \cdots & \cdots f_{6} \\ \frac{\partial f_{6}}{\partial \theta_{1}} & \frac{\partial f_{6}}{\partial \theta_{2}} & \cdots \cdots & \frac{\partial f_{6}}{\partial \theta_{6}}\end{array}\right]$ for six axis robots
Changing a Jacobian reference frame in $\{B\}$ to frame $\{A\}$:

$$
\left[\begin{array}{c}
{ }^{A} v \tag{5.70}\\
{ }^{A} \omega
\end{array}\right]=\left[\begin{array}{cc}
{ }_{B}^{A} R & 0 \\
0 & { }_{B}^{A} R
\end{array}\right]\left[\begin{array}{c}
{ }^{B} v \\
{ }^{B} \omega
\end{array}\right]=\left[\begin{array}{cc}
{ }_{B}^{A} R & 0 \\
0 & { }_{B}^{A} R
\end{array}\right]{ }^{B} J(\Theta) \dot{\Theta}
$$

Thus, ${ }^{A} J(\Theta)=\left[\begin{array}{cc}{ }_{B}^{A} R & 0 \\ 0 & { }_{B}^{A} R\end{array}\right]{ }^{B} J(\Theta)$
Find ${ }^{3} J(\Theta)=\left[\quad\right.$ and ${ }^{0} J(\Theta)=[\quad$ from (5.55) and (5.57)

Singularities

$$
\begin{equation*}
\dot{\Theta}=J(\Theta)^{-1} v \tag{5.72}
\end{equation*}
$$

If a matrix is singular, its determinant is zero, and so its inverse cannot be found. As such, under a singular condition, the end effector velocity cannot be translated into the joint angular velocity.

Types of singularities:

1) Work space boundary singularity - Occurs when the robot arm is fully stretched out with the end effector reaching the outer boundary.
2) Work space interior singularity - Occurs when two links line up to fold with the end effector inside the work space boundary.

Static Forces in Manipulators

$$
\begin{aligned}
& n=P \times f \\
& n=|P||f| \sin \theta^{------a ~ c r o s s ~ v e c t o r ~ p r o d u c t ~}
\end{aligned}
$$

$$
{ }^{\mathrm{i}} \mathrm{n}_{\mathrm{i}}=\text { torque exerted on link } \mathrm{i} \text { by link } \mathrm{i}-1 \text {, express in }\{\mathrm{i}\}
$$

$$
{ }^{\mathrm{i}} \mathrm{f}_{\mathrm{i}}=\text { force exerted on link i by link } \mathrm{i}-1 \text {, express in }\{\mathrm{i}\}
$$

$$
\theta_{\mathrm{i}}=\text { angle between }{ }^{\mathrm{i}} \mathrm{f}_{\mathrm{i}} \text { and }{ }^{\mathrm{i}} \eta_{\mathrm{i}}
$$

$$
{ }^{i} P_{i+1}=\text { displacement of link } \mathrm{i}+1 \text {, viewed in }\{\mathrm{i}\}
$$

Equilibrium (counter balancing) of Force \& Moment at a single link - Propagation Equations:

$$
\begin{align*}
& { }^{i} f_{i}={ }^{i} f_{i+1}={ }_{i+1}^{i} R^{i+1} f_{i+1} \tag{5.80}\\
& { }^{i} n_{i}={ }^{i} n_{i+1}+{ }^{i} P_{i+1} \times{ }^{i} f_{i+1}={ }_{i+1}^{i} R^{i+1} n_{i+1}+{ }^{i} P_{i+1} \times{ }^{i} f_{i+1} \tag{5.81}
\end{align*}
$$

Joint torque at equilibrium - revolute joints $=($ Moment vector $)($ Joint axis vector $)$

$$
\begin{equation*}
\tau_{i}={ }^{i} n_{i}^{T i} \hat{z}_{i} \tag{5.82}
\end{equation*}
$$

Joint torque at equilibrium - prismatic joints $=($ Force vector $)($ Joint axis vector $)$

$$
\begin{equation*}
\tau_{i}==_{i}^{i} f_{i}^{T} \hat{z}_{i} \tag{5.83}
\end{equation*}
$$

The partial derivatives of (5.82) constitute a Jacobian $J(\Theta)$ asin Ex. 5.7.

Development of Jacobian for converting Force into Torque

Work done in Cartesian space $=$ Work done in Joint space

$$
\begin{equation*}
F \cdot \delta X=\tau \cdot \delta \Theta \quad(6 \times 1 \text { vectors }) \tag{5.91}
\end{equation*}
$$

Rewriting in notation for matrix multiplication

$$
\begin{equation*}
F^{T} \delta X=\tau^{T} \delta \Theta \tag{5.94}
\end{equation*}
$$

Since $\delta X=J \delta \theta$ by definition,

$$
\begin{equation*}
F^{T} J \delta \theta=\tau^{T} \delta \Theta \tag{5.95}
\end{equation*}
$$

Since $\delta \theta \equiv \delta \Theta$,

$$
F^{T} J=\tau^{T}
$$

Transposing the two sides, $\left(F^{T} J\right)^{T}=\left(\tau^{T}\right)^{T}$

$$
\begin{equation*}
\tau=J^{T} F \tag{5.96}
\end{equation*}
$$

A Jacobian transpose maps the gripper force into equivalent joint torques.

Force and Velocity Transformation in the tool frame
$\{A\}=$ Revolute, $\{B\}=$ Fixed, per Fig. 5.13
(6x1) velocity vector: $v=\left[\begin{array}{l}v \\ \omega\end{array}\right]$, and (6x1) force/moment vector: $\bar{F}=\left[\begin{array}{l}F \\ N\end{array}\right]$
For the Velocity Transformation, starting from (5.45) and (5.47)

$$
\begin{align*}
& { }^{B} \omega_{B}={ }_{A}^{B} R \omega_{A}+\dot{\theta}_{B}^{B} \hat{Z}_{B} \tag{5.45}\\
& { }^{B} v_{B}={ }_{A}^{B} R\left({ }^{A} v_{B}+{ }^{A} \omega_{A} \times{ }^{A} P_{B}\right) \tag{5.47}
\end{align*}
$$

Setting $\dot{\theta}_{B}=0 \ldots \ldots$ (why?) and

$$
\begin{align*}
{\left[\begin{array}{c}
{ }^{B} v_{B} \\
{ }^{B} \omega_{B}
\end{array}\right] } & =\left[\begin{array}{cc}
{ }_{A}^{B} R & -{ }_{A}^{B} R^{A} P_{B O r g} \times \\
0 & { }_{A}^{B} R
\end{array}\right]\left[\begin{array}{c}
{ }^{A} v_{A} \\
{ }^{A} \omega_{A}
\end{array}\right] \tag{5.101}\\
& =\left[\begin{array}{c}
{ }_{A}^{B} R^{A} v_{A}-{ }_{A}^{B} R\left({ }^{A} P_{B O r g} \times{ }^{A} \omega_{A}\right) \\
{ }_{A}^{B} R^{A} \omega_{A}
\end{array}\right]
\end{align*}
$$

Note that
a) ${ }_{A}^{B} R\left({ }^{A} \omega_{A} \times{ }^{A} P_{B}\right)={ }_{A}^{B} R\left(-{ }^{A} P_{B} \times{ }^{A} \omega_{A}\right)=-{ }_{A}^{B} R P_{B}^{A} \times{ }^{A} \omega_{A}$
b) $\quad{ }^{A} P_{B O r g} \times{ }^{A} \omega_{A}=\left[\begin{array}{ccc}i & j & k \\ P_{x} & P_{y} & P_{x} \\ \Omega_{x} & \Omega_{y} & \Omega_{z}\end{array}\right]=\left[\begin{array}{c}i\left(P_{y} \Omega_{z}+P_{z} \Omega_{y}\right) \\ j\left(P_{z} \Omega_{x}-P_{x} \Omega_{z}\right) \\ k\left(P_{x} \Omega_{y}-P_{y} \Omega_{x}\right)\end{array}\right]=\left[\begin{array}{ccc}0 & -P_{z} & P_{y} \\ P_{z} & 0 & -P_{x} \\ -P_{y} & P_{x} & 0\end{array}\right]\left[\begin{array}{l}\Omega_{x} \\ \Omega_{y} \\ \Omega_{z}\end{array}\right]$
$\left[\begin{array}{c}{ }^{A} v_{A} \\ { }^{A} \omega_{A}\end{array}\right]=\left[\begin{array}{c}{ }_{B}^{A} R^{B} v_{B}+{ }_{B}^{A} R\left({ }_{A}^{B} R^{A} P_{\text {BOrg }} \times{ }^{A} \omega_{A}\right) \\ { }_{B}^{A} R^{B} \omega_{B}\end{array}\right]=\left[\begin{array}{c}\left.{ }_{B}^{A} R^{B} v_{B}+{ }^{A} P_{B O r g} \times{ }_{B}^{A} R^{B} \omega_{B}\right) \\ { }_{B}^{A} R^{B} \omega_{B}\end{array}\right]$

$$
=\left[\begin{array}{cc}
{ }_{B}^{A} R & { }^{A} P_{B O r g} \times{ }_{B}^{A} R \tag{5.102}\\
0 & { }_{B}^{A} R
\end{array}\right]\left[\begin{array}{c}
{ }^{B} v_{B} \\
{ }^{B} \omega_{B}
\end{array}\right]
$$

The Force-Moment transformation is derived from (5.80) and (5.81):

$$
\begin{align*}
& { }^{i} f_{i}={ }^{i} f_{i+1}={ }_{i+1} R^{i+1} f_{i+1} \tag{5.80}\\
& { }^{i} n_{i}={ }^{i} n_{i+1}+{ }^{i} P_{i+1}{ }^{i} f_{i+1}={ }_{i+1}^{i} R^{i+1} n_{i+1}+{ }^{i} P_{i+1} \times{ }^{i} f_{i+1} \tag{5.81}\\
& {\left[\begin{array}{c}
{ }^{A} F_{A} \\
{ }^{A} N_{A}
\end{array}\right]=\left[\begin{array}{cc}
{ }_{B}^{A} R & 0 \\
{ }^{A} P_{B O r g} \times{ }_{B}^{A} R & { }_{B}^{A} R
\end{array}\right]\left[\begin{array}{c}
{ }^{B} F_{B} \\
{ }^{B} N_{B}
\end{array}\right]} \tag{5.105}
\end{align*}
$$

The relationship between Velocity transformation and Force-Moment transformation:

$$
\begin{equation*}
{ }_{B}^{A} T_{f}=\left({ }_{B}^{A} T_{v}\right)^{T} \tag{5.107}
\end{equation*}
$$

Homework \#7 due 10/22/14
5.3(Jacobian from velocity propagation only), 5.13 (study only, the answer in the textbook), 5.15 (variables are $\theta^{\prime}{ }_{1}$ and $\mathrm{d}^{\prime}{ }_{2}$), 5.18 (only the $4^{\text {th }}$ column is pertinent), 5.19 (same as 5.15)

Exercise 5.3

Jacobian derived from the velocity propagation from Base to Tip

A Homework \#7 problem - Follow the procedure in Example 5.3.

Jacobian derived from Static Force propagation from Tip to Base

$$
{ }^{4} F_{4}=\left[\begin{array}{lll}
F_{x} & F_{y} & F_{z}
\end{array}\right]^{T} \quad{ }^{4} N_{4}=\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right]
$$

$$
\left.\begin{array}{l}
{ }^{3} F_{3}={ }_{4}^{3} R^{4} F_{4}=\left[\begin{array}{lll}
F_{x} & F_{y} & F_{z}
\end{array}\right]^{T} \\
{ }^{3} N_{3}={ }_{4}^{3} R^{4} N_{4}+{ }_{4}^{3} P \times{ }^{3} F_{3}=0+\left[\begin{array}{c}
L_{3} \\
0 \\
0
\end{array}\right] \times\left[\begin{array}{c}
F_{x} \\
F_{y} \\
F_{z}
\end{array}\right]=\left[\begin{array}{c}
0 \\
-L_{3} F_{z} \\
-L_{3} F_{y}
\end{array}\right] \\
{ }^{2} F_{2}={ }_{3}^{2} R^{3} F_{3}=\left[\begin{array}{ccc}
c_{3} & -s_{3} & 0 \\
s_{3} & c_{3} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
F_{x} \\
F_{y} \\
F_{z}
\end{array}\right]=\left[\begin{array}{c}
c_{3} F_{x}-s_{3} F_{y} \\
s_{3} F_{x}+c_{3} F_{y} \\
F_{z}
\end{array}\right] \\
{ }^{2} N_{2}={ }_{3}^{2} R^{3} N_{3}+{ }_{3}^{2} P \times{ }^{2} F_{2}={ }_{3}^{2} R\left[\begin{array}{c}
0 \\
-L_{3} F_{z} \\
-L_{3} F_{z \backslash y}
\end{array}\right]+\left[\begin{array}{c}
L_{2} \\
0 \\
0
\end{array}\right] \times\left[\begin{array}{c}
c_{3} F_{x}-s_{3} F_{y} \\
s_{3} F_{x}+c_{3} F_{y} \\
F_{z}
\end{array}\right]=\left[\begin{array}{c}
-L_{3} F_{z}-L_{3} c_{3} F_{z} \\
L_{2}\left(s_{3} F_{x}+c_{3} F_{y}\right)+L_{3} F_{y}
\end{array}\right] \\
{ }^{1} F_{1}={ }_{2}^{1} R^{2} F_{2}=\left[\begin{array}{ccc}
c_{2} & -s_{2} & 0 \\
0 & 0 & -1 \\
s_{2} & c_{2} & 0
\end{array}\right]\left[\begin{array}{c}
c_{3} F_{x}-s_{3} F_{y} \\
s_{3} F_{x}+c_{3} F_{y} \\
F_{z}
\end{array}\right]=\left[\begin{array}{c}
c_{2}\left(c_{3} F_{x}-s_{3} F_{y}\right)-s_{2}\left(s_{3} F_{x}+c_{3} F_{y}\right) \\
F_{z} \\
s_{2}\left(c_{3} F_{x}-s_{3} F_{y}\right)+c_{2}\left(s_{3} F_{x}+c_{3} F_{y}\right)
\end{array}\right] \\
L_{2} s_{3} F_{z} \\
{ }^{1} N_{1}={ }_{2}^{1} R^{2} N_{2}+{ }_{2}^{1} P \times{ }^{1} F_{1}={ }_{2}^{1} R\left[\begin{array}{c}
0 \\
L_{1} \\
-L_{3} F_{z} \\
-L_{3} F_{z \backslash y}
\end{array}\right]+\left[\begin{array}{c}
-L_{3} F_{z}-L_{3} c_{3} F_{z} \\
L_{2}\left(s_{3} F_{x}+c_{3} F_{y}\right)+L_{3} F_{y}
\end{array}\right]+\left[\begin{array}{c}
1 \\
0
\end{array}\right] \times F_{1}=[
\end{array}\right]
$$

Torques $\tau_{1}, \tau_{2}, \tau_{3}=$ the Z elements of ${ }^{1} N_{1},{ }^{2} N_{2}$, and ${ }^{3} N_{3}$
$\tau_{1}=\left[-L_{1}-L_{2} c_{2}+L_{3}\left(s_{2} s_{3}-c_{2} c_{3}\right)\right] F_{z}=\left(-L_{1}-L_{2} c_{2}-L_{3} c_{23}\right) F_{z}$
$\tau_{2}=L_{2} s_{3} F_{x}+\left(L_{2} c_{3}+L_{3}\right) F_{y}$
$\tau_{3}=L_{3} F_{y}$
Rearranging, $\left[\begin{array}{c}\tau_{1} \\ \tau_{2} \\ \tau_{3}\end{array}\right]=\left[\begin{array}{ccc}0 & 0 & -L_{1}-L_{2} c_{2}-L_{3} c_{23} \\ L_{2} s_{3} & L_{2} c_{3}+L_{3} & 0 \\ 0 & L_{3} & 0\end{array}\right]\left[\begin{array}{l}F_{x} \\ F_{y} \\ F_{z}\end{array}\right]={ }^{4} J^{T}(\theta)\left[\begin{array}{l}F_{x} \\ F_{y} \\ F_{z}\end{array}\right] g$,

Since $\tau=J^{T} F$

$$
\left[\begin{array}{l}
\tau_{1} \\
\tau_{2} \\
\tau_{3}
\end{array}\right]=^{4} J^{T}(\theta)\left[\begin{array}{l}
F_{x} \\
F_{y} \\
F_{z}
\end{array}\right] \text {, therefore a transpose of the (3x3) Jacobian matrix is now found. }
$$

By observation of the geometric link-frame diagram, the kinematric equations are:

$$
{ }^{0} P_{4 O r g}=\left[\begin{array}{c}
{ }^{4} P_{x} \\
{ }_{x} P_{y} \\
{ }^{4} P_{z}
\end{array}\right]=\left[\begin{array}{c}
L_{1} c_{1}+L_{2} c_{1} c_{2}+L_{3} c_{1} c_{23} \\
L_{1} s_{1}+L_{2} s_{1} c_{2}+L_{3} s_{1} c_{23} \\
L_{2} s_{2}+L_{3} s_{23}
\end{array}\right]
$$

Taking partial derivatives to arrive at a Jacobian,

$$
{ }^{0} J(\theta)=\left[\begin{array}{lll}
\frac{\partial P_{x}}{\partial \theta_{1}} & \frac{\partial P_{x}}{\partial \theta_{2}} & \frac{\partial P_{x}}{\partial \theta_{3}} \\
\frac{\partial P_{y}}{\partial \theta_{1}} & \frac{\partial P_{y}}{\partial \theta_{2}} & \frac{\partial P_{y}}{\partial \theta_{3}} \\
\frac{\partial P_{z}}{\partial \theta_{1}} & \frac{\partial P_{z}}{\partial \theta_{2}} & \frac{\partial P_{z}}{\partial \theta_{3}}
\end{array}\right]
$$

Once ${ }^{0} J(\theta)$ is found, ${ }^{4} J(\theta)$ can be found from:

$$
{ }^{4} J(\theta)={ }_{0}^{4} R^{0} J(\theta),
$$

where ${ }_{0}^{4} R={ }_{4}^{0} R^{T}$ is readily calculated from the rotational matrixes.

